• Title/Summary/Keyword: transmit power

Search Result 975, Processing Time 0.033 seconds

Optical E-H Transition Properties of Inductively Coupled Plasma with Ar Gas Pressure and RF Pourer (Ar 가스 압력과 RF 전력변화에 따른 유도결합형ㆍ플라즈마 E-H모드 변환의 광학적 특성)

  • 허인성;조주웅;이영환;김광수;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.20-23
    • /
    • 2004
  • In this paper, the emission properties of electrodeless fluorescent lamp were discussed using the inductively coupled plasma. To transmit the electromagnetic energy into the chamber, a RF power of 13.56 [MHz] was applied to the antenna and considering the Ar gas pressure and the RF electric power change, the emission spectrum, Ar I line, luminance were investigated. At this time, the input parameter for ICP RF plasma, Ar gas pressure and RF power were applied in the range of 10∼60 [mTorr], 10∼300 [W], respectively. From emission intensity and lumnance intensity results, the mode transition from E-mode to H-mode was observed. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

Partial Shift Mapping for PAPR Reduction with Low Complexity in OFDM Systems

  • Ouyang, Xing;Jin, Jiyu;Jin, Guiyue;Wang, Zhisen
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.268-271
    • /
    • 2012
  • The high peak-to-average power is one of the main drawbacks in OFDM systems. This letter proposes a partial shift mapping (PSM) method for peak power reduction in OFDM systems. By utilizing the properties of the discrete Fourier transform, the proposed method generates a set of candidate signals without additional complex multiplication and selects the one with minimum peak power for transmission. Analyses and simulations confirm that the PSM method achieves satisfactory peak power reduction performance and low complexity compared with other kindred methods, for example, selected mapping and partial transmit sequences.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

Superposition Coding Multiplexing for Fading Broadcast Channels with Rate Constraints (전송률 제한을 둔 페이딩 방송채널을 위한 중첩코딩 다중화)

  • Lee, Min;Oh, Seong-Keun;Jeong, Byung-Jang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1072-1078
    • /
    • 2008
  • In this paper, we propose an efficient superposition coding multiplexing(SCM) method based on power allocation in descending order for fading broadcast channels in which per-user minimum and maximum rate constraints are considered in order to maximize the transmission effectiveness. It consists of three steps as follows. In the first step, a user group is selected to maximize the number of users with whom a transmitter can communicate instantaneously. In the second step, per-user power allocation for each user is done in descending order of transmit power by determining a maximum allowable interference power from all subsequent interfering users in order to guarantee its corresponding minimum rate, and then a residual power is calculated. The final step is performed if some power remains even after the second step. In this step, additional power allocation is performed up to the maximum transmit power to provide the maximum rate to the corresponding user, again in ascending order, starting from the last user in descending order. But, this method does not require power reallocation to subsequent users because tentative power allocation in the second step has been performed in descending order to guarantee the minimum rate for each user, taking into account the maximum allowable interference power from all the subsequent users. Therefore, the proposed method gets more efficient in term of computational complexity when per-user minimum as well as maximum rate constraints exist, especially as the number of users increases.

Reconfigurable Wireless Power Transfer System for Multiple Receivers

  • Hwang, Sun-Han;Kang, Chung G.;Lee, Seung-Min;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.199-205
    • /
    • 2016
  • We present a novel schematic using a 3-dB coupler to transmit radiofrequency (RF) power to two receivers selectively. Whereas previous multiple receiver supporting schemes used hardware-switched methods, our scheme uses a soft power-allocating method, which has the advantage of variable power allocation in real time to each receiver. Using our scheme, we can split the charging area and focus the RF power on the targeted areas. We present our soft power-allocating method in three main points. First, we propose a new power distribution hardware structure using a FPGA (field-programmable gate array) and a 3-dB coupler. It can reconfigure the transmitting power to two receivers selectively using accurate FPGA-controlled signals with the aid of software. Second, we propose a power control method in our platform. We can variably control the total power of transmitter using the DC bias of the drain input of the amplifier. Third, we provide the possibility of expansion in multiple systems by extending these two wireless power transfer systems. We believe that this method is a new approach to controlling power amplifier output softly to support multiple receivers.

Estimation of Transferred Power from a Noise Source to an IC with Forwarded Power Characteristics

  • Pu, Bo;Kim, Taeho;Kim, SungJun;Kim, Jong-Hyeon;Kim, SoYoung;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • This paper proposes an accurate approach for predicting transferred power from a noise source to integrated circuits based on the characteristics of the power transfer network. A power delivery trace on a package and a printed circuit board are designed to transmit power from an external source to integrated circuits. The power is demonstrated between an injection terminal on the edge of the printed circuit board and integrated circuits, and the power transfer function of the power distribution network is derived. A two-tier calibration is applied to the test, and scattering parameters of the network are measured for the calculation of the power transfer function. After testing to obtain the indispensable parameters, the real received and tolerable power of the integrated circuits can be easily achieved. Our proposed estimation method is an enhancement of the existing the International Electrotechnical Commission standard for precise prediction of the electromagnetic immunity of integrated circuits.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

A Study on Optimum Broadband Design Including of CATV Transmitting Circuits. (CATV전송회로의 최적.광대역 설계 및 제작에 관한 연구)

  • 김태균;김동일;하도훈;정세모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1994.10a
    • /
    • pp.69-78
    • /
    • 1994
  • The broadband Power Splitters and Tap-Offs are needed to transmit a number of channels of signals with the high quality of signals. In this paper the design theories and analysis of the theoretical frequency characteristics of the Wilkinson's Power Splitters and Tap-Offs are reviewed. Then it has been showned that the theoretical frequency characteristics of the proposed compensated Wilkinson's Power Splitter and Tap-Off are improved much in comparison with the prototype wikinson's Power Splitter and conventional weakely-coupled Tap-Off. Furthermore the measured results of frequency characteristics for the fabricated circuits show agreement with the theoretical results and hence the validity of the proposed design and analysis methods has been confirmed.

  • PDF

Novel Topology and Control Strategy of HVDC Grid Connection for Open Winding PMSG based Wind Power Generation System

  • Zeng, Hengli;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2014
  • To satisfy the high voltage direct current (HVDC) grid connection demand for wind power generation system, a novel topology and control strategy of HVDC grid connection for open-winding permanent magnet synchronous generator (PMSG) based wind power generation system is proposed, in which two generator-side converter and two isolated DC/DC converters are used to transmit the wind energy captured by open winding PMSG to HVDC grid. By deducing the mathematic model of open winding PMSG, the vector control technique, position sensorless operation, and space vector modulation strategy is applied to implement the stable generation operation of PMSG. Finally, the simulation model based on MATLAB is built to validate the availability of the proposed control strategy.