• 제목/요약/키워드: translationally controlled tumor protein

검색결과 16건 처리시간 0.03초

PC12 세포주에서 Translationally Controlled Tumor Protein에 의한 Mitogen-activated Protein Kinases 활성 조절 (Regulation of Mitogen-activated Protein Kinases by Translatoinally Controlled Tumor Protein in PC12 Cells)

  • 김미연;김미영
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.323-327
    • /
    • 2010
  • Translationally controlled tumor protein (TCTP) activates basophils to release histamine and causes chronic inflammation. It was also reported that TCTP significantly reduced in brain of Alzheimer's Disease and Down Syndrome as compared to normal person, suggesting that TCTP might be involved in cognitive function. We wondered whether TCTP could act as a general inducer in neurotransmitters release in brain. We, therefore, investigated the role of TCTP in PC12 cell line which expressed neuronal properties. We found that TCTP could activate JNK, and the activity was inhibited by pretreatment of dicoumarol, a JNK inhibitor. However, TCTP could not activate ERK that has known to be involved in neurotransmitter release. These suggest TCTP did not participate in neurotransmitter release from PC12 cells, and TCTP might not be a general inducer in neurotransmitter release.

Identification of the Calcium Binding Sites in Translationally Controlled Tumor Protein

  • Kim, Moon-Hee;Jung, Yoon-Wha;Lee, Kyung-Lim;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.633-636
    • /
    • 2000
  • Translationally controlled tumor protein (TCTP), also known as IgE-dependent histamine-releasing factor, is a growth-related tumor protein. Although the primary sequence of rat TCTP does not reveal any recognizable $Ca^{2+}$ -binding motif, previous studies have demonstrated that rat TCTP consisting of 172 amino acids is a $Ca^{2+}$ -binding protein. However. the region of TCTP required for $Ca^{2+}$ interaction has not been mapped to the molecule. Here, we reported that the $Ca^{2+}$ binding region of TCTP which was mapped by using a combination of deletion constructs of rat TCTP and $^{45}Ca^{2+}$-overlay assay. was confined to amino acid residues 81-112. This binding domain did not show any peculiar loop of calcium- binding motif such as CaLB domain and EF hand motif and it seems to be constituted of random coil regions neighboring the a helix. Thus, our data confirm that TCTP is a novel family of $Ca^{2+}$ -binding protein.

  • PDF

Targeted Efficacy of Dihydroartemisinin for Translationally Controlled Protein Expression in a Lung Cancer Model

  • Liu, Lian-Ke;Wu, Heng-Fang;Guo, Zhi-Rui;Chen, Xiang-Jian;Yang, Di;Shu, Yong-Qian;Zhang, Ji-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2511-2515
    • /
    • 2014
  • Objective: Lung cancer is one of the malignant tumors with greatest morbidity and mortality around the world. The keys to targeted therapy are discovery of lung cancer biomarkers to facilitate improvement of survival and quality of life for the patients with lung cancer. Translationally controlled tumor protein (TCTP) is one of the most overexpressed proteins in human lung cancer cells by comparison to the normal cells, suggesting that it might be a good biomarker for lung cancer. Materials and Methods: In the present study, the targeted efficacy of dihydroartemisinin (DHA) on TCTP expression in the A549 lung cancer cell model was explored. Results and Conclusions: DHA could inhibit A549 lung cancer cell proliferation, and simultaneously up-regulate the expression of TCTP mRNA, but down-regulate its protein expression in A549 cells. In addition, it promoted TCTP protein secretion. Therefore, TCTP might be used as a potential biomarker and therapeutic target for non-small cell lung cancers.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells

  • Cheng, Xiang;Li, Junhua;Deng, Jie;Li, Zhenzhen;Meng, Shuyan;Wang, Huayan
    • BMB Reports
    • /
    • 제45권1호
    • /
    • pp.20-25
    • /
    • 2012
  • The present study aimed to investigate the function of translationally controlled tumor protein (TCTP) in the regulation of Oct4 in mouse embryonic carcinoma P19 cells and mouse J1 embryonic stem (ES) cells. The mRNA level of endogenous TCTP in somatic cells was 2-4 folds higher than that in pluripotent P19 and J1 ES cells. Overexpression of TCTP in mouse pluripotent cells not only reduced the level of Oct4 transcription, but also decreased the pluripotency of stem cells. The N-terminal end of TCTP (amino acids 1-60) played an important role in suppressing the Oct4 promoter. Moreover, overexpression of TCTP in P19 cells suppressed the Oct4 promoter activity in a dose- and a time-dependent manner. In addition, knockdown of TCTP by small interfering RNA increased the expression of Oct4. Our study indicates that TCTP downregulates the Oct4 expression by binding the Sf1 site of Oct4 promoter in mouse pluripotent cells.

Identification of the Interaction between Rat Translationally Controlled Tumor Protein/IgE-dependent Histamine Releasing Factor and Myosin Light Chain

  • Kim, Min-Jeong;Jung, Jae-Hoon;Choi, Eung-Chil;Park, Hae-Young;Lee, Kyung-Lim
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.526-530
    • /
    • 2001
  • The translationally controlled tumor protein (TCTP), also known as the IgE-dependent histamine releasing factor (HRF), was used in the yeast two-hybrid system to screen the interacting molecules. We obtained the N-terminus truncated rat fast myosin alkai light chain from the rat skeletal muscle cDNA library in the screening. Since either TCTP/HRF or the myosin light chain is known to be associated with histamine secretion from RBL-2H3 cells, we investigated the possible interaction between rat TCTP/HRF and nonmuscle myosin light chain in these cells. We used affinity chromatography and coimmunoprecipitation. Our data suggests that HRF and the myosin light chain interact, which may play an important role in histamine release in RBL-2H3 cells.

  • PDF

Expression of Translationally Controlled Tumor Protein (TCTP) Gene of Dirofilaria immitis Guided by Transcriptomic Screening

  • Fu, Yan;Lan, Jingchao;Wu, Xuhang;Yang, Deying;Zhang, Zhihe;Nie, Huaming;Hou, Rong;Zhang, Runhui;Zheng, Wanpeng;Xie, Yue;Yan, Ning;Yang, Zhi;Wang, Chengdong;Luo, Li;Liu, Li;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • 제52권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose.

Structural Characterization of Growth-Related Translationally Controlled Tumor Protein P23

  • Lee, Bong-Jin;Hong, Yoon-Hun;Park, Sang-Ho;Lee, Kyunglim
    • 한국자기공명학회논문지
    • /
    • 제5권1호
    • /
    • pp.46-55
    • /
    • 2001
  • P23, a translationally controlled turner protein is involved in the interleukin-4 secretion from human basophils and is also known to be an IgE-dependent histamine-releasing factor. However, the precise physiological function and structure of P23 have not been elucidated. In the current study, we constructed the optimal expression and purification protocol of P23 and investigated the secondary structure and structural stability in various conditions. Circular dichroism (CD) investigation showed that the secondary structure of P23 adopts mainly a P-sheet conformation. CD spectroscopy and differential scanning calorimetry revealed that P23 is fairly stable in the pH range of neutral and mild-basic conditions and in the temperature range of 10 - 50$\^{C}$. Since the thermal stability and the P-sheet content of P23 were decreased by the addition of Ca$\^$2+/ ion, it could be suggested that Ca$\^$2+/ion induces structural change by partially destabilizing the structure of P23. In addition various H experiments were monitored to solve the aggregation of P23. Den results will provide the preliminary structural information about P23.

  • PDF