• Title/Summary/Keyword: transient method

Search Result 2,572, Processing Time 0.032 seconds

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Transient Characteristics of Separately Excited d-c Motor Driven by Thyristor d-c Chopper (Thyristor 직류 Chopper방식으로 구동되는 직류타여자식 전동기의 과도특성해석법)

  • Hee Young Chun
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.9-19
    • /
    • 1972
  • The transient characteristics of separately excited d-c motor driven by thyristor d-c chopper is studied in this paper. The armature controlled system is applied. As a result of theoretrical analysis the following conculsions were drawn: (1) For the transient analysis, it is recognized that the state transition analysis is a more general method and powerful tool than the state equation method or signal flow graph method, although it includes iterative matrix calculations. And the system is dealt with a finite width sampled-data system in the state transition analysis. (2) The transient characteristics of the motor angular velocity and its torque to the sampling duration variation are compared with those due to the amplitude variation of d-c chopper voltage as follows. The attenuation rate of the transient characteristics is equal in both cases, but the initial value of the transient characteristics in former case is greater than in latter case. (3) The roots of characteristics equation of the system lie inside the unit circle of the Z-plane. Therefor the system is stable. Further it is found that as the sampling duration is decreased the relative stability is lessened.

  • PDF

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Optimization Application for Assessment of Total Transfer Capability Using Transient Energy Function in Interconnection Systems (과도에너지 함수를 이용하여 연계계통의 총송전용량 평가를 위한 최적화기법 응용)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Lee, Sang-Keun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2311-2315
    • /
    • 2009
  • This paper presents a method to apply energy margin for assesment of total transfer capability (TTC). In order to calculate energy margin, two values of the transient energy function have to be computed. The first value is transient energy that is the sum of kinetic and potential energy at the end of fault. The second is critical energy that is potential energy at controlling UEP(Unstable Equilibrium Point). It is seen that TTC level is determined by not only bus voltage magnitudes and line thermal limits but also transient stability. TTC assessment is compared by the repeated power flow(RPF) method and optimization method.

A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW IN A MONOPROPELLANT PROPULSION SYSTEM (단일추진제 추진시스템의 과도기유체 해석)

  • Chae, Jong-Won
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.69-81
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted by using the method of characteristics(MOC). It reviews algebraic simultaneous equations method and Cramer's rule method utilized to drive the compatible and characteristic equations to understand MOC extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. The valve response time is one of the dominant parameters governing the fluid transient phenomena. The results show that the shorter closing time induces the greater pressure response amplitude. And it shows that the installation of in-line orifice is effectively to limit the fluid transients in rapid valve response time and at high pressure. But it seems that the effect of orifice weakens at slow valve response time and at low pressures.

Analysis of Transient Features in Speech Signal by Estimating the Short-term Energy and Inflection points (변곡점 및 단구간 에너지평가에 의한 음성의 천이구간 특징분석)

  • Choi, I.H.;Jang, S.K.;Cha, T.H.;Choi, U.S.;Kim, C.S.
    • Speech Sciences
    • /
    • v.3
    • /
    • pp.156-166
    • /
    • 1998
  • In this paper, I would like to propose a dividing method by estimating the inflection points and the average magnitude energy in speech signals. The method proposed in this paper gave not only a satisfactory solution for the problems on dividing method by zero-crossing rate, but could estimate the feature of the transient period after dividing the starting point and transient period in speech signals before steady state. In the results of the experiment carried out with monosyllabic speech, it was found that even through speech samples indicated in D.C. level, the staring and ending point of the speech signals were exactly divided by the method. In addition to the results, I could compare with the features, such as the length of transient period, the short term energy, the frequency characteristics, in each speech signal.

  • PDF

A Method for Transient Stability Assessment using Maximum Generator Angle (발전기 최대 위상각을 이용한 전력계통 과도안정도 평가)

  • Lee, Duck-Jae;Jang, Gil-Soo;Kwon, Sae-Hyuk;Kim, Tae-Kyun;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.239-241
    • /
    • 2003
  • The time domain simulation method of transient stability presents accuracy and reliability, but it demands much computational time. Therefore it is necessary to filter out very stable and very unstable cases from a large set of contingencies. Following a disturbance, the shape and magnitude of representative generator angle which is most increased after fault clearing are the measure of transient stability. This paper propose a method that is not a calculation of the exact CCT of contingency, but a fast assessment of transient stability. Also it can help operators identify transient stability immediately without analyzing the graphical results. The proposed method is applied to the KEPCO system. The PSS/E is used as a time domain simulation engine by IPLAN.

  • PDF

Analysis of the torque transient performance of the induction motor by means of phase segregation method (상분리법에 의한 유도전동기의 토오크 과도특성해석)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.247-249
    • /
    • 2000
  • Transient phenomena cause delay in control response and must be studied and eliminated, if possible, suppressed. The difficulty in analyzing transient phenomena in ac machines comes from the large number of windings involved. But, it is possible that only one phase is used to represent three phases of the induction motor as called phase segregation method. The phase segregation method provides equivalent circuits for both the steady and transient states of induction motor. In this paper, analysis of the torque transient of the induction motor be carried out the phase segregation method and confirmed in the possibility of transientless torque control.

  • PDF

The Effect Assessment Method of Control and Protection Systems on Transient Stability of Power Systems

  • Miki, Tetsushi;Sugino, Ryuzaburou;Kono, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.736-740
    • /
    • 2004
  • In order to overcome the problems of simulation methods, the power system transient stability assessment method using critical fault clearing time functions has been developed. Using the above method, this paper has developed the new method which can assess accurately and efficiently the effects of control and protection systems on transient stability which is the most important characteristic to assess in power systems. At first, critical fault clearing time functions CCT(W:load) are defined by taking notice of the fact that transient stability is mainly controlled by fault clearing time and load. Next, the method to be enable to assess accurately and efficiently the effects of control and protection systems on transient stability has been newly developed by using the above functions. Finally, it has been applied to the effect assessment in the occurrence of a three-phase fault in a model power system. Results of application have been clarified its effectiveness.

  • PDF

Development and validation of transient analysis module in nodal diffusion code RAST-V with Kalinin-3 coolant transient benchmark

  • Jaerim Jang;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2163-2173
    • /
    • 2024
  • This study introduces a transient analysis module developed for RAST-V and validates it using the Kalinin-3 benchmark problem. For the benchmark analysis, RAST-V standalone and STREAM/RAST-V calculations were performed. STREAM supplies the few-group constants and RAST-V conducts a 3D core simulation utilizing few-group cross-sectional data. To improve accuracy, the main solver was developed based on the advanced semi-analytic nodal method. To evaluate the computational capability of the transient analysis module in RAST-V, Kalinin-3 benchmark is employed. Kalinin-3 represents a coolant transient benchmark that offers experimental data during the deactivation of the Main Circulation Pumps. Consequently, the transient calculations reflected the changes in the reactor flow rate. Benchmark comprising steady-state and transient calculations. During the steady state, the STREAM/RAST-V combination demonstrated a 30 ppm root mean square difference from 0 to 128.50 EFPD. For the transient calculations, STREAM/RAST-V showed power differences within ±7 % over a range of 0-300 s. Axial offset differences were within ±3 %, and the RMS difference in radial power ranged within 2.596 % at both 0 and 300 s. Overall, this study effectively demonstrated the newly developed transient solver in RAST-V and validated it using the Kalinin-3 benchmark problem.