DOI QR코드

DOI QR Code

Development and validation of transient analysis module in nodal diffusion code RAST-V with Kalinin-3 coolant transient benchmark

  • Jaerim Jang (Korea Atomic Energy Research Institute) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.09.13
  • Accepted : 2024.01.15
  • Published : 2024.06.25

Abstract

This study introduces a transient analysis module developed for RAST-V and validates it using the Kalinin-3 benchmark problem. For the benchmark analysis, RAST-V standalone and STREAM/RAST-V calculations were performed. STREAM supplies the few-group constants and RAST-V conducts a 3D core simulation utilizing few-group cross-sectional data. To improve accuracy, the main solver was developed based on the advanced semi-analytic nodal method. To evaluate the computational capability of the transient analysis module in RAST-V, Kalinin-3 benchmark is employed. Kalinin-3 represents a coolant transient benchmark that offers experimental data during the deactivation of the Main Circulation Pumps. Consequently, the transient calculations reflected the changes in the reactor flow rate. Benchmark comprising steady-state and transient calculations. During the steady state, the STREAM/RAST-V combination demonstrated a 30 ppm root mean square difference from 0 to 128.50 EFPD. For the transient calculations, STREAM/RAST-V showed power differences within ±7 % over a range of 0-300 s. Axial offset differences were within ±3 %, and the RMS difference in radial power ranged within 2.596 % at both 0 and 300 s. Overall, this study effectively demonstrated the newly developed transient solver in RAST-V and validated it using the Kalinin-3 benchmark problem.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. NRF-2019M2D2A1A03058371).

References

  1. J. Jang, Development of Nodal Diffusion Code for VVER and HTGR Analysis with Advanced Semi Analytic Nodal Method, Doctoral Thesis, Ulsan National Institute of Science and Technology, 2023.
  2. J. Jang, S. Dzianisau, D. Lee, Development of nodal diffusion code RAST-V for Vodo-Vodyanoi Energetichesky reactor analysis, Nucl. Eng. Technol. 54 (2022) 3494-3515, https://doi.org/10.1016/j.net.2022.04.007.
  3. J. Jang, M. Hursin, W. Lee, A. Pautz, M. Papadionysiou, H. Ferroukhi, D. Lee, Analysis of Rostov-II benchmark using conventional two-step code systems, Energies 15 (2022) 3318, https://doi.org/10.3390/en15093318.
  4. KALININ-3 coolant transient benchmark. https://www.oecd-nea.org/jcms/pl_32181/kalinin-3-coolant-transient-benchmark. OECD/National Environment Agency - Singapore).
  5. V.A. Tereshonok, V.S. Stepanov, V.V. Ivchenkov, V.A. Pitilimov, S.P. Nikonov, Description of a Transient Caused by the Switching-Off of One of the Four Operating MCP at Nominal Reactor Power at NPP Kalinin Unit 3, vol. 2009, National Environment Agency - Singapore/National Science Council Taiwan/DOC, 2008, p. 6.
  6. AREA, Arcadia Revision Rod Ejection Accident, Topical Report, ANP-10338NP, Zeroth Revision, 2015. https://www.nrc.gov/docs/ML1530/ML15300A289.pdf.
  7. S. Hakkinen, E. Syrjalahti, A. Rintala, Validation of the Serpent 2-HEXTRAN-SMABRE code sequence in a VVER-1000 coolant transient, J. Nucl. Sci. Technol. 57 (2020) 1167-1180, https://doi.org/10.1080/00223131.2020.1773348.
  8. G. Hegyi, A. Kereszturi, I. Trosztel, Z. Elter, ATHLET/KIKO3D Results of the OECD/NEA Benchmark for Coupled Codes on KALININ-3 NPP Measured Data, NENE, Slovenia, 2014.
  9. Y. Perin, OECD KALININ-3 Benchmark: Neutronic Calculations of Exercises 3a and 3 with PARCS 4th Workshop of OECD Kalinin-3 Benchmark, held in Karlsruhe, Germany, 2013.
  10. A. Kereszturi, I. Trosztel, Zs Elter, Gy Hegyi, Simulation of the OECD NEA Kalinin-3 Benchmark (Phase 2) by the ATHLET-Kiko3d Code System, Fifth Workshop of OECD Kalinin-3 Benchmark, Paris, France, 2013.
  11. a K. Emiliya Georgie, I Ano "Status of PSU/REL Benchmark Cross Section Library", 4th Workshop of OECD Kalinin-3 Benchmark, held in Karlsruhe, Germany, 2013.
  12. C.A.S. Ojinnaka, V.G. Zimin, V.P. Strashnykh, S.P. Nikonov, Analysis of the Kalinin-3 coolant transient benchmark by SKETCH-N/SKAZKA code system, Ann. Nucl. Energy 147 (2020), https://doi.org/10.1016/j.anucene.2020.107716.
  13. T.Y. Downar, V. Xu, H. Seker N, PARCS NRC-v3.3.1 Volume I: Input Manual, RES/U.S. NRC, Rockville, Maryland, 2018.
  14. G. Jeong, A Study on Enhancement of Computational Efficiency for Transient Nodal Calculations, Thesis, Department of Nuclear Engineering, Seoul National University, 2003.
  15. M. Avramova, K. Ivanov, K. Velkov, S. Nikonov, P. Gordienko, B. Shumskiy, O. Kavun, Benchmark on Reactivity Compensation of Boron Dilution by Stepwise Insertion of Control Rod Cluster into the VVER-1000 Core, Version 1.5, OECD Nuclear Energy Agency, March 20.
  16. E. Jeong, Verification and Validation for Transient Calculation of STREAM/RAST-K 2.0, Master's Thesis, Ulsan National Institute of Science and Technology, 2018.
  17. A. Kereszturi, M. Telbisz, AER Benchmark Specification Sheet AER-DYN-001, AER Benchmark Book, Forschungszentrum Rossendorf, Institute of Safety Research, Dresden, Germany, 1999.
  18. U. Grundmann, AER Benchmark Specification Sheet AER-DYN-002, AER Benchmark Book, Forschungszentrum Rossendorf, Institute of Safety Research, Dresden, Germany, 1999.
  19. K. Obaidurrahman, J.B. Doshi, R.P. Jain, V. Jagannathan, Development and validation of coupled dynamics code "trikin" for VVER reactors, Nucl. Eng. Technol. 42 (2010) 259-270, https://doi.org/10.5516/NET.2010.42.3.259.
  20. A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Adaptive time-step control for modal methods to integrate the neutron diffusion equation, Nucl. Eng. Technol. 53 (2021) 399-413, https://doi.org/10.1016/j.net.2020.07.004.
  21. S. Akbas, A.M. Ougouag, V. Martinez-Quiroga, F. Aydogan, C. Allison, Survey of Coupling Schemes in Traditional Coupled Neutronics and Thermal-Hydraulics Codes, IMECE2015-52990, 2015, https://doi.org/10.1115/IMECE2015-52990. November 13-19, 2015, Houston, Texas.
  22. R. Kyrki-Rajamaki, Three-dimensional Reactor Dynamics Code for VVER Type Nuclear Reactors, VTT technical research centre of finland, Espoo, September 1995. https://www.osti.gov/etdeweb/servlets/purl/440063.
  23. P. Balestra, C. Parisi, A. Alfonsi, C. Rabiti, Simulation of AER-DYN-002 and AER-DYN-003 control rod ejection benchmarks by RELAP5-3D/PHISICS coupled codes, Nucl, Technol. 193 (2016) 175-182, https://doi.org/10.13182/NT14-138.
  24. J. Jang, T.T. Quoc, S. Dzianisau, W. Lee, D. Lee, Verification of RAST-K Hexagonal Analysis Module with SNR and VVER-440 Benchmarks (online), KNS Winter Meeting Korea, 2020. Dec 16-18.
  25. Y. Jo, M. Hursin, D. Lee, H. Ferroukhi, A. Pautz, Analysis of simplified BWR full core with serpent-2/simulate-3 hybrid stochastic/deterministic code, Ann. Nucl. Energy 111 (2018) 141-151, https://doi.org/10.1016/j.anucene.2017.08.061.
  26. M. Hursin, L. Rossinelli, H. Ferroukhi, A. Pautz, BWR FULL CORE ANALYSIS with SERPENT/SIMULATE-3 HYBRID STOCHASTIC/DETERMINSTIC CODE SEQUENCE, Joint International Conference Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method, 2015. Nashville, TN, April 19-23.
  27. Preoperational inspection report of Shin-Kori nuclear power plant Unit 3 (Initial Fuel Load and Startup Test, Vol. 2, Korea Institute of Nuclear Safety, Kins/AR-1008 (2016).
  28. J. Hou, M. Avramova, K. Ivanov, OECD/NEA Multi-Physics Benchmarks for Traditional and Novel Coupled Codes, Workshop on Multiphysics Model Validation, NCSU, Raleigh, 2017. https://www.ne.ncsu.edu/wp-content/uploads/2017/07/06_Jason_OECD-NEA-Multi-Physics-Benchmarks_full.pdf.