• Title/Summary/Keyword: transgenic crop

Search Result 256, Processing Time 0.025 seconds

Transgenic Tobacco Expressing the hrpNEP Gene from Erwinia pyrifoliae Triggers Defense Responses Against Botrytis cinerea

  • Sohn, Soo-In;Kim, Yul-Ho;Kim, Byung-Ryun;Lee, Sang-Yeob;Lim, Chun Keun;Hur, Jang Hyun;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.232-239
    • /
    • 2007
  • $HrpN_{EP}$, from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the $hrpN_{EP}$ gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in $hrpN_{EP}$-expressing tobacco differed from that in plants expressing $hpaG_{Xoo}$ from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Plant Regeneration from Hairy Root of Rehmannia glutinosa Liboschitz Transformed by Agrobacterium rhizogenes (형질전환된 지황의 모상근으로부터 식물체의 재분화)

  • Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • A protocol for plant regeneration from hairy root of Rehmannia glutinosa transformed by Agrobacterium rhizogenes ATCC15834 has been developed. Transgenic shoots were regenerated from hairy roots within 6 weeks after culture on the SH medium supplemented with 0.5 mg/l BA. Shoots were rooted on plant growth regulator free SH medium successfully. The transformed plants, which were regenerated from hairy roots, had thiner roots with extensive lateral branches, wrinkled leaves, shorter node, and grew faster compared with non-transformed plants. The biomass of the transformed plant was 1.28 g (F.W) per plant, significantly higher than the non-transformed plant (0.54 g F.W). The catalpol content in the transformed plant (0.56%) was also higher than that of the non-transformed plants (0.43%).

Biolistic transformation of Moroccan durum wheat varieties by using mature embryo-derived calli

  • Senhaji, Chaimae;Gaboun, Fatima;Abdelwahd, Rabha;Diria, Ghizlane;Udupa, Sripada;Douira, Allal;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.246-254
    • /
    • 2021
  • Environmental stresses are estimated to have reduced global crop yields of wheat by 5.5%. However, traditional approaches for the transfer of resistance to these stresses in wheat plants have yielded limited results. In this regard, genetic transformation has undoubtedly opened up new avenues to overcome crop losses due to various abiotic stresses. Particle bombardment has been successfully employed for obtaining transgenic wheat. However, most of these procedures employ immature embryos, which are not available throughout the year. Therefore, the present investigation utilized mature seeds as the starting material and used the calli raised from three Moroccan durum wheat varieties as the target tissue for genetic transformation by the biolistic approach. The pANIC-5E plasmid containing the SINA gene for drought and salinity tolerance was used for genetic transformation. To enhance the regeneration capacity and transformation efficiency of the tested genotypes, the study compared the effect of copper supplementation in the induction medium (up to 5 μM) with the standard MS medium. The results show that the genotypes displayed different sensitivities to CuSO4, indicating that the transformation efficiency was highly genotype-dependent. The integration of transgenes in the T0 transformants was demonstrated by polymerase chain reaction (PCR) analysis of the obtained resistant plantlets with primers specific to the SINA gene. Among the three genotypes studied, 'Isly' showed the highest efficiency of 9.75%, followed by 'Amria' with 1.25% and 'Chaoui' with 1%.

Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process

  • Ding, Feng;Zhang, Shuwei;Chen, Houbin;Peng, Hongxiang;Lu, Jiang;He, Xinhua;Pan, Jiechun
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1259-1267
    • /
    • 2018
  • Litchi (Litchi chinensis Sonn.) is an important subtropical fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. Previous studies indicate that low-temperature is a key factor in litchi floral induction. In order to reveal the genetic and molecular mechanisms underlying the reproductive process in litchi, we had analyzed the transcriptome of buds before and after low-temperature induction using RNA-seq technology. A key flower bud differentiation associated gene, a homologue of FLORICAULA/LEAFY, was identified and named LcLFY (GenBank Accession No. KF008435). The cDNA sequence of LcLFY encodes a putative protein of 388 amino acids. To gain insight into the role of LcLFY, the temporal expression level of this gene was measured by real-time RT-PCR. LcLFY was highly expressed in flower buds and its expression correlated with the floral developmental stage. Heterologous expression of LcLFY in transgenic tobacco plants induced precocious flowering. Meantime, we investigated the sub-cellular localization of LcLFY. The LcLFY-Green fluorescent protein (GFP) fusion protein was found in the nucleus. The results suggest that LcLFY plays a pivotal role as a transcription factor in controlling the transition to flowering and in the development of floral organs in litchi.

Perilla transformation using selection markers containing antibiotics and basta (항생제와 제초제 이중 선발 마커를 이용한 들깨 형질전환)

  • Kim, Kyung-Hwan;Lee, Jung-Eun;Ha, Sun-Hwa;Hahn, Bum-Soo;Park, Jong-Sug;Lee, Myung-Hee;Jung, Chan-Sik;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.299-306
    • /
    • 2008
  • A modified method of Agrobacterium-mediated perilla transformation was developed using two selection markers of an antibiotics (either hpt or nptll) and an herbicidal (bar) gene. Perilla hypocotyl explants were cocultured with Agrobacterium tumefaciens EHA 105 strain harboring plasmid vector (either pMOG6-Bar or pCK-Bar) for three days, respectively. Primary shoots were selected with antibiotics of hygromycin (15 mg/L) or kanamycin (125 mg/L) and regenerated shoots were further selected with herbicide phosphinothricin (ppt,1.2 mg/L) to obtain authentic transformants. Roots were induced for the regenerated shoots on the MS medium without hormone and 80 putative transgenic plants were obtained. Transgene integration into perilla genome was confirmed by Southern blot and their expression was analyzed by Northern blot. T1 perilla seeds drived from To plants were tested 0.3% basta spray for identification of stable gene delivery to next generation.

Manipulating Isoflavone Levels in Mungbean Sprouts by Chemical Treatment (대사유도물질 처리에 의한 발아녹두의 아이소플라본 생합성 양상)

  • Lee Ji-Hyun;Chung Il-Min;Park Sei-Joon;Kim Wook Han;Kim So-Yeun;Kim Jin-Ae;Jung Soosuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.528-532
    • /
    • 2004
  • We have studied physiological responses of mung bean sprout to the treatment of elicitors. Chemicals such as salicylic acid and methyl jasmonic acid are not only the intermediates found in plant defense system but also could affect plant secondary metabolism. We found that mild treatment of salicylic acid and acetyl salicylic acid (aspirin) increase isoflavone production dramatically in mung bean sprout which has very low level of isoflavones compared with soybean sprout. The isoflavone content in salicylic acid treated- and acetyl salicylic acid treated-mung bean sprout was about 2.3 and 2.2 times higher than that of control, respectively. However, the increasing patterns of isoflavone in cotyledon and hypocotyl and root were not identical. The major increase among isoflavone fractions in cotyledon was led by the increase in malonylglycitin and malonyldaidzin level. Whereas, the increase in hypocotyl and root was led by malonyldaidzin. Methyl jasmonic acid did not show statistically significant increase in mung bean sprout. With this result, we were able to propose the non-transgenic method, which can control the isoflavone production in germinating mung bean.

Increase of isoflavones in soybean callus by Agrobacterium-mediated transformation

  • Jiang, Nan;Jeon, Eun-Hee;Pak, Jung-Hun;Ha, Tae-Joung;Baek, In-Youl;Jung, Woo-Suk;Lee, Jai-Heon;Kim, Doh-Hoon;Choi, Hong-Kyu;Cui, Zheng;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.253-260
    • /
    • 2010
  • Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.

Current status in calcium biofortification of crops (작물의 생합성 칼슘 함량 증대 연구 현황)

  • Lee, Jeong-Yeo;Nou, Ill-Sup;Kim, Hye-Ran
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • Calcium is an essential nutrient for living organisms, with key structural and signaling roles. Its deficiency in plants can result in poor biotic and abiotic stress tolerance as well as reduced crop quality and yield. Calcium deficiency in humans causes various diseases such as osteoporosis and rickets. Biofortification of calcium in various food crops has been suggested as an economic and environmentally advantageous method to enhance human intake of calcium. Recent efforts to increase the levels of calcium in food crops have used calcium/proton antiporters ($CAXs$) and modified one to increase calcium transport into vacuoles through genetic engineering. It has been reported that overall calcium content of transgenic plants has been increased in their edible portions with some adverse effects. In conclusion, biofortification of calcium will add more value in crops as well as will be beneficial for animal and human. Therefore, more fundamental studies on the mechanisms of calcium ion storage and transporting are essential for more effective calcium biofortification.

Bacillus vallismortis Strain EXTN-1 Mediated Systemic Resistance against Potato virus Y and X in the Field

  • Park, Kyung-Seok;Paul, Diby;Ryu, Kyung-Ryl;Kim, Eun-Yung;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.360-363
    • /
    • 2006
  • Efficacy of plant growth promoting rhizobacteria(PGPR) Bacillus vallismortis strain EXTN-1 has been proved in eliciting induced systemic resistance(ISR) in several crops. The present paper described the beneficial effects of EXTN-1 in potato as increase in yield and chlorophyll content, and plant protection against Potato Virus Y and X(PVY & PVX). EXTN-1 induced systemic resistance to the plants resulting in significant disease suppression in the field. Also the plants under treatment with EXTN-1 had higher chlorophyll content. The bacterized plants had significantly higher yields over the untreated control plants. The strain induced activation of defense genes, PR-1a and PDF 1.2 in transgenic tobacco model, which indicated the possible role of both SA, and JA pathways in EXTN-1 mediated plant protection against crop diseases.