Browse > Article
http://dx.doi.org/10.5010/JPB.2012.39.1.023

Current status in calcium biofortification of crops  

Lee, Jeong-Yeo (Green Bio Research Center, Cabbage Genomics assisted breeding supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Nou, Ill-Sup (Department of Horticulture, Sunchon National University)
Kim, Hye-Ran (Green Bio Research Center, Cabbage Genomics assisted breeding supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Plant Biotechnology / v.39, no.1, 2012 , pp. 23-32 More about this Journal
Abstract
Calcium is an essential nutrient for living organisms, with key structural and signaling roles. Its deficiency in plants can result in poor biotic and abiotic stress tolerance as well as reduced crop quality and yield. Calcium deficiency in humans causes various diseases such as osteoporosis and rickets. Biofortification of calcium in various food crops has been suggested as an economic and environmentally advantageous method to enhance human intake of calcium. Recent efforts to increase the levels of calcium in food crops have used calcium/proton antiporters ($CAXs$) and modified one to increase calcium transport into vacuoles through genetic engineering. It has been reported that overall calcium content of transgenic plants has been increased in their edible portions with some adverse effects. In conclusion, biofortification of calcium will add more value in crops as well as will be beneficial for animal and human. Therefore, more fundamental studies on the mechanisms of calcium ion storage and transporting are essential for more effective calcium biofortification.
Keywords
Biofortification; calcium; nutrient; CAXs; ACAs; Brassica;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:106-117   DOI
2 Park S, Kang TS, Kim CK, Han JS, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53: 5598-5603   DOI   ScienceOn
3 Park S, Kim C-K, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis $H^+/Ca^{2+}$ transporter. Mol Breeding 14:275-282   DOI   ScienceOn
4 Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar $Ca^{2+}$-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404-408   DOI
5 Pittman JK, Shigaki T, Cheng NH, Hirschi KD (2002) Mechanism of N-terminal autoinhibition in the Arabidopsis $Ca^{2+}/H^+$antiporter CAX1. J Biol Chem 277:26452-26459   DOI
6 Raboy V (2001) Seeds for a better future: "low phytate" grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458-462   DOI
7 Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair $Ca^{2+}$ signals induced by abiotic and biotic stresses. Plant J 53:287-299
8 Rea PA, Britten CJ, Jennings IR, Calvert CM, Skiera LA, Leigh RA (1992) Regulation of the vacuolar $H^+$-pyrophosphatase by free calcium. Plant Physiol 100:1706-1715   DOI
9 Reddy AS, Thomas TL (1996) Expression of a cyanobacterial DELTA 6-desaturase gene results in gamma-linolenic acid production in transgenic plants. Nat Biotechnol 14:639-642   DOI
10 Rocheford TR, Wong JC, Egesel CO, Lambert RJ (2002) Enhancement of vitamin E levels in corn. J Am Coll Nutr 21:191-198   DOI   ScienceOn
11 Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of ${\beta}$-carotene and lycopene content in tomato fruit. Plant J 24:413-419   DOI
12 Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691-706   DOI
13 Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14: S401-S417
14 Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401-412   DOI   ScienceOn
15 Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/$H^+$ antiporter CAX2. J Biol Chem 278:6610-6617   DOI
16 Shin YM, Park HJ, Yim SD, Baek NI, Lee CH, AN G, W YM (2006) Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm. Plant Biotechnol J 4:303-315   DOI
17 Simon PW, Goldman IL (2007) Carrot. In R. J. Singh, ed., Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable Crops, pp. 497-517. Boca Raton, FL: CRC Press/Taylor & Francis Group
18 Stark-Lorenzen P, Nelke B, Hanssler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668-673   DOI   ScienceOn
19 Stein A, Sachdev H, Qaim M (2006) Potential impact and cost-effectiveness of Golden Rice. Nature Biotechnol 24: 1200-1201
20 Tichenal CA, Dobbs J (2007) A system to assess the quality of food sources of calcium. J Food Compost Anal 20:717-724   DOI
21 Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168-175   DOI
22 Weaver CM (1990) Assessing calcium status and metabolism. J Nutr 120:1470-1473
23 Weaver CM, Heaney RP, Nikel KP, Packard PL (1997) Calcium bioavailability from high oxalate vegetables: Chinese vegetables, sweet potatoes and rhubarb. J Food Sci 62:524-525   DOI
24 White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586-593   DOI
25 White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49-84   DOI
26 Winkler JT (2011) Biofortification: improving the nutritional quality of staple crops. Access Not Excess ed Charles Pasternak. Chapter 10, pp 100-112
27 Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L, Wu LG (2009) $Ca^{2+}$ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12:1003-1010   DOI
28 Wyatt SE, Tsou PL, Robertson D (2002) Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1-10   DOI
29 Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki, K., Iida, H (2010) MCA1 and MCA2 that mediate $Ca^{2+}$ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284-1296   DOI
30 Yang SH, Moran DL, Jia HW, Bicar EH, Lee M, Scott MP (2002) Expression of a synthetic porcine alpha-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11-20   DOI
31 Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (${\beta}$-carotene) biosynthetic pathway into (carotenoids-free) rice endosperm. Science 287: 303-305   DOI   ScienceOn
32 Young TE, Giesler-Lee J, Gallie DR (2004) Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38:910-922   DOI
33 Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753-763   DOI
34 Zeh M, Casazza AP, Kreft O, Roessner U, Bieberich K, Willmitzer L, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127:792-802   DOI
35 Baxter I, Tchieu J, Sussman MR., Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelesen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology 132: 618-628   DOI
36 Adams CL, Hambidge M, Raboy V, Dorsch JA, Sian L, Westcott JL, Krebs NF (2002) Zinc absorption from a low-phytic acid maize. Am J Clin Nutr 76:556-559
37 Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177-81   DOI   ScienceOn
38 Al-Babili S, Beyer P (2005) Golden rice - five years on the road-five years to go? Trends Plant Sci 10, 565-573   DOI
39 Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21:988-992   DOI
40 Austin-Phillips S, Bingham ET, Koegel RG, Rausch J, Straub RJ, Will J, Zeigelhoffer T, Zeigelhoffer P, Burgess RR (1999) Production of industrial and animal feed enzymes in transgenic alfalfa. http://www.molecularfarming.com/nonmedical.html (April 15, 2008)
41 Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16:701-704   DOI
42 Bouis HE (2005) Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proc Natl Acad Sci USA 62:403-411
43 Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195-206   DOI
44 Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26:1301-1308   DOI
45 Cheng N, Pittman JK, Barkla B, Shigaki T, Hirschi K (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347-364   DOI
46 Cahoon EB, Hall SE, Ripp KG, Ganzke TS, HitzWD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082-1087   DOI   ScienceOn
47 Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110:355-363
48 Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525-3530   DOI
49 Chung MY, Han JS, Giovannoni J, Liu Y, Kim CK, Lim KB, Chung JD (2010) Modest calcium increase in tomatoes expressing a variant of Arabidopsis cation/$H^+$ antiporter. Plant Biotech Rep 4:15-21   DOI
50 Conn SJ, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105, 1081-1102   DOI
51 Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215-231   DOI
52 DellaPenna D (2007) Biofortification of plant-based food: enhancing folate levels by metabolic engineering. Proc Natl Acad Sci USA 104:3675-3676   DOI
53 Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77:878-881   DOI
54 Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific coexpression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869-880   DOI
55 Diaz dela Garza RI, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 101:13720-13725   DOI
56 Dinkins RD, Reddy MSS, Meurer CA, Yan B, Trick H, Thibaud- Nissen FO (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol Plant 37:742-747   DOI
57 Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61: 593-620   DOI
58 Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of ${\beta}$-carotene and lutein. J Exp Bot 56:81-89
59 Egnin M, Prakash CS (1997) Transgenic sweetpotato expressing a synthetic storage protein gene exhibits high level of total protein and essential amino acids. In Vitro Cell Dev Biol 33:52A
60 Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and nonmevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17-27
61 Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Biotechnology 13:577-582   DOI
62 Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41-71   DOI
63 Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100:658-664   DOI   ScienceOn
64 Fraser PD, Römer S, Kiano JW, Shipton CA, Mills PB, Drake R, Schuch W, Bramley PM (2001) Elevation of carotenoids in tomato by genetic manipulation. J Sci Food Agric 81:822-827   DOI
65 Galili G, Galili S, Lewinsohn E, Tadmor Y (2002) Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. Crit Rev Plant Sci 21:167-204   DOI
66 Giovinazzo G, d'Amico L, Paradiso A, Bollini R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57-69
67 Graham RM, Thompson JW, Wei J, Bishopric NH, Webster KA (2007) Regulation of Bnip3 death pathways by calcium, phosphorylation, and hypoxia-reoxygenation. Antioxid Redox Signal 9:1309-1315   DOI
68 Grases F, Ramis M, Costa-Bauza A (2000) Effects of phytate and pyrophosphate on brushite and hydroxyapatite crystallization. Comparison with the action of other polyphosphates. Urol Res 28: 136-140   DOI
69 Hambidge KM, Krebs NF, Westcott JL, Sian L, Miller LV, Peterson KL, Raboy (2005) Absorption of calcium from tortilla meals prepared from low-phytate maize. Am J Clin Nutr 82:84-87
70 Han JC, Yang XD, Zhang T, Li H, Li WL, Zhang ZY, Yao JH (2009) Effects of 1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, and type IIb sodium phosphate cotransporter gene expression of one- to twenty-one-day-old broilers. Poult Sci 88:323-329   DOI
71 Heaney RP, Weaver CM, Recker RR (1988) Calcium absorbability from spinach. Am J Clin Nutr 47:707-709
72 Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13: 551-562   DOI   ScienceOn
73 Heaney RP,Weaver CM (1989) Oxalate: effect on calcium absorbability. Am J Clin Nutr 50:830-832
74 Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Natl Acad Sci USA 97:8699-8704   DOI
75 Hellwege EM, Gritscher D,Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057-1065   DOI
76 Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113-2122   DOI
77 Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136: 2438-2442   DOI
78 Karley AJ, Leigh RA, Sanders D (2000a) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835-844   DOI
79 Karley AJ, Leigh RA, Sanders D (2000b) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465-470   DOI
80 Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S, Takaiwa F (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063-1074   DOI
81 Lai JS, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:395-402   DOI
82 Kim CK, Han JS, Lee HS, Oh JY, Shigaki T, Park SH, Hirschi K (2006) Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese. Plant Cell Rep 25:1226-1232   DOI
83 Knight H, Knight MR (2001) Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci 6:262-267   DOI   ScienceOn
84 Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219-226   DOI
85 Li L, Liu SM, Hu YL, Zhao WP, Lin ZP (2001) Increase of sulphur-containing amino acids in transgenic potato with 10 ku zein gene from maize. Chin Sci Bull 46:482-484   DOI
86 Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll utr 21:184-190S   DOI   ScienceOn
87 Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52:1526-1533   DOI
88 MacRobbie EAC (2006a) Control of volume and turgor in stomatal guard cells. J Membr Biol 210:131-142   DOI
89 MacRobbie EAC (2006b) Osmotic effects on vacuolar ion release in guard cells. Proc Natl Acad Sci USA 103:1135-1140   DOI
90 McAinsh MR, Pittman JL (2009) Shaping the calcium signature. New Phytol 181:275-294   DOI
91 Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature 19:470-474   DOI
92 Meenakshi J, Johnson N, Manyong V, Degroote H, Javelosa J, Yanggen D, Naher F, Gonzalez C, Garcia J, Meng E (2010) How cost-effective is biofortification in combating micronutrient malnutrition? an Ex ante assessment. World Development 38:64-75   DOI
93 Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613-618   DOI   ScienceOn
94 Morris J, Hawthorne KM, Hotze T, Abrams SA, Hirschi KD (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA 105:1431-1435   DOI
95 Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19: 1602-1616   DOI
96 Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147:939-953   DOI
97 Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746-754   DOI
98 O'Quinn PR, Nelssen JL, Goodband RD, Knabe DA,Woodworth JC, Woodworth MD, Lohrmann TT (2000) Nutritional value of a genetically improved high-lysine, high-oil corn for young pigs. J Anim Sci 78:2144-2149
99 Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis $H^+/Ca^{2+}$ transporters. Plant Physiol 139:1194-1206   DOI