• 제목/요약/키워드: transcriptome profiling

검색결과 78건 처리시간 0.026초

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice

  • Jung Ah, Kim;Sung-Hee, Kim;Jung Seon, Seo;Hyuna, Noh;Haengdueng, Jeong;Jiseon, Kim;Donghun, Jeon;Jeong Jin, Kim;Dain, On;Suhyeon, Yoon;Sang Gyu, Lee;Youn Woo, Lee;Hui Jeong, Jang;In Ho, Park;Jooyeon, Oh;Sang-Hyuk, Seok;Yu Jin, Lee;Seung-Min, Hong;Se-Hee, An;Joon-Yong, Bae;Jung-ah, Choi;Seo Yeon, Kim;Young Been, Kim;Ji-Yeon, Hwang;Hyo-Jung, Lee;Hong Bin, Kim;Dae Gwin, Jeong;Daesub, Song;Manki, Song;Man-Seong, Park;Kang-Seuk, Choi;Jun Won, Park;Jun-Won, Yun;Jeon-Soo, Shin;Ho-Young, Lee;Jun-Young, Seo;Ki Taek, Nam;Heon Yung, Gee;Je Kyung, Seong
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.896-910
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.

RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

  • Kim, Sunyoung;Park, Jungwook;Kim, Ji Hyeon;Lee, Jongyun;Bang, Bongjun;Hwang, Ingyu;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.249-259
    • /
    • 2013
  • Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::${\Omega}$) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::${\Omega}$). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

체색 패턴이 다른 개볼락(Sebastes pachycephalus) 피부 전사체 프로파일링 (Skin Transcriptome Profiling of the Blass Bloched Rockfish (Sebastes pachycephalus) with Different Body Color Patterns)

  • 장요순
    • 한국어류학회지
    • /
    • 제32권3호
    • /
    • pp.117-129
    • /
    • 2020
  • 생물의 종 구분에 이용하는 지표 중 체색은 특징이 뚜렷한 형태 지표로서, 어류의 종 동정에 유용한 형태형질이다. 개볼락은 한국 중부와 남부, 일본 홋카이도 남쪽 등지에 분포하는 상업적으로 중요한 어종으로, 피부에 반점의 유무 및 마킹이 있는 위치에 따라 4개의 아종으로 구분하는 복잡한 체색 특성을 갖는다. 그러나 개볼락의 다양한 체색 패턴과 관련된 유전자 탐색 및 유전자 변이 발굴 등 체색 형성에 관여하는 유전자 규명에 관한 연구는 없다. 이에 따라 본 연구에서는 개볼락의 체색 패턴 관련 유전자 발굴 및 유전자 발현 특성을 규명하기 위한 기초 연구로 체색 타입별 피부 전사체를 프로파일링하였다. 개볼락을 Wild type (반점과 marking 없음)과 Color type (반점과 마킹 모두 있음)으로 구분하였고, 피부 전사체를 RNA-seq 방법을 이용하여 분석하였다. 개볼락 피부 전사체의 발현량을 비교하여 체색 타입별 차등발현유전자 164개를 확보하였다. 이들 차등발현유전자의 기능을 Gene ontology(GO) 분석으로 확인한 결과, 2개는 molecular function, 46개는 biological process, 6개는 cellular component 기능그룹에 속하였다. 차등발현유전자 중 CTL (Galactose-specific lectin nattectin), CUL1 (Cullin-1), CMAS (N-acylneuraminate cytidylyltransferase), NMRK2 (Nicotinamide riboside kinase 2), ALOXE3 (Hydroperoxide isomerase ALOXE3), SLC4A7 (Sodium bicarbonate cotransporter 3) 등은 특정 체색 타입 특이적인 발현양상을 나타냈다. 이번 연구는 개볼락의 체색 패턴 형성에 관여하는 전사체를 탐색한 첫 번째 연구로, 체색 형성 관련 기능유전자 발굴을 위한 후보유전자로 개볼락의 체색 타입별 차등발현유전자를 확보한 것에 의의가 있다. 향후에는 이들 후보유전자의 발현양상 및 기능을 분석하여 개볼락의 복잡한 체색 패턴과 관련된 기능유전자의 특성을 밝히고자 한다.

XPERNATO-TOX: an Integrated Toxicogenomics Knowledgebase

  • Woo Jung-Hoon;Kim Hyeoun-Eui;Kong Gu;Kim Ju-Han
    • Genomics & Informatics
    • /
    • 제4권1호
    • /
    • pp.40-44
    • /
    • 2006
  • Toxicogenomics combines transcriptome, proteome and metabolome profiling with conventional toxicology to investigate the interaction between biological molecules and toxicant or environmental stress in disease caution. Toxicogenomics faces the problems of comparison and integration across different sources of data. Cause of unusual characteristics of toxicogenomic data, researcher should be assisted by data analysis and annotation for getting meaningful information. There are already existing repositories which claim to stand for toxicogenomics database. However, those just contain limited abilities for toxicogenomic research. For supporting toxicologist who comes up against toxicogenomic data flood, now we propose novel toxicogenomics knowledgebase system, XPERANTO-TOX. XPERANTO-TOX is an integrated system for toxicogenomic data management and analysis. It is composed of three distinct but closely connected parts. Firstly, Data Storage System is for reposit many kinds of '-omics' data and conventional toxicology data. Secondly, Data Analysis System consists of analytical modules for integrated toxicogenomics data. At last, Data Annotation System is for giving extensive insight of data to researcher.

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes

  • Avila-Peltroche, Jose;Won, Boo Yeon
    • 한국해양바이오학회지
    • /
    • 제12권1호
    • /
    • pp.50-58
    • /
    • 2020
  • Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.

Transcriptome Analysis to Characterize the Immune Response of NecroX-7 in Mouse CD4+ T Cells

  • Kim, Eun-Jung
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.60-68
    • /
    • 2015
  • NecroX-7 is a novel small compound of the NecroX series based on the indole moiety, which has potent cytoprotective and antioxidant properties. We previously detected potential immune regulatory effects of NecroX-7 in immune related diseases like Graft-versus-Host Disease. However, the function and the underlying mechanisms of immunological effects of NecroX-7 in the immune system have not been well established. In this study, we investigated the immune response characterization of differentially expressed genes of NecroX-7 administration in $CD4^+$ T cells by microarray analysis. $CD4^+$ T cells stimulated with NecroX-7 ($40{\mu}M$) or vehicle for 72 hours resulted in the identification of 337 differentially expressed genes (1.5 fold, P<0.05) by expression profiling analysis. Twenty eight of the explored NecroX-7-regulated genes were related to immune system processes. These genes were validated by quantitative real-time PCR. The most significant genes were glutathione reductase, eukaryotic translation elongation factor 1, lymphotoxin-alpha, heat shock protein 9 and chloride intracellular channel protein 4. These findings demonstrate the strongly immune response of NecroX-7 in $CD4^+$ T cells, suggesting that cytoprotection and immune regulation may underlie the critical aspects of NecroX-7 exposure.

Transcriptional Profiling of the Trichoderma reesei Recombinant Strain HJ48 by RNA-Seq

  • Huang, Jun;Wu, Renzhi;Chen, Dong;Wang, Qingyan;Huang, Ribo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1242-1251
    • /
    • 2016
  • The ethanol production of Trichoderma reesei was improved by genome shuffling in our previous work. Using RNA-Seq, the transcriptomes of T. reesei wild-type CICC40360 and recombinant strain HJ48 were compared under fermentation conditions. Based on this analysis, we defined a set of T. reesei genes involved in ethanol production. Further expression analysis identified a series of glycolysis enzymes, which are upregulated in the recombinant strain HJ48 under fermentation conditions. The differentially expressed genes were further validated by qPCR. The present study will be helpful for future studies on ethanol fermentation as well as the roles of the involved genes. This research reveals several major differences in metabolic pathways between recombinant strain HJ48 and wild-type CICC40360, which relates to the higher ethanol production on the former, and their further research could promote the development of techniques for increasing ethanol production.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.