Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02003

Transcriptional Profiling of the Trichoderma reesei Recombinant Strain HJ48 by RNA-Seq  

Huang, Jun (State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University)
Wu, Renzhi (National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences)
Chen, Dong (National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences)
Wang, Qingyan (National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences)
Huang, Ribo (State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1242-1251 More about this Journal
Abstract
The ethanol production of Trichoderma reesei was improved by genome shuffling in our previous work. Using RNA-Seq, the transcriptomes of T. reesei wild-type CICC40360 and recombinant strain HJ48 were compared under fermentation conditions. Based on this analysis, we defined a set of T. reesei genes involved in ethanol production. Further expression analysis identified a series of glycolysis enzymes, which are upregulated in the recombinant strain HJ48 under fermentation conditions. The differentially expressed genes were further validated by qPCR. The present study will be helpful for future studies on ethanol fermentation as well as the roles of the involved genes. This research reveals several major differences in metabolic pathways between recombinant strain HJ48 and wild-type CICC40360, which relates to the higher ethanol production on the former, and their further research could promote the development of techniques for increasing ethanol production.
Keywords
Trichoderma reesei; transcriptome; RNA-Seq; qPCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anders S, Huber W. 2010. Differential expression analysis for sequence count data Genome Biol. 11: R106.   DOI
2 Anders S. 2010. Htseq: analysing high-throughput sequencing data with python. Available at http://www-huber.embl.de/HTSeq.
3 Amore A, Faraco V. 2012. Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew. Sust. Energ. Rev. 16: 3286-3301.   DOI
4 Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Statist. Soc. B 1: 289-300.
5 Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. 2013. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulose inducing substrates wheat straw and lactose. Biotechnol. Biofuels 6: 1-14.   DOI
6 Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR, Neto JA, et al. 2002. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J. Biol. Chem. 277: 13983-13988.   DOI
7 Elkins JG, Raman B, Keller M. 2010. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 21: 657-662.   DOI
8 Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988-31997.   DOI
9 Gong CS, Maun CM, Tsao GT. 1981. Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus, Monilia sp. Biotechnol. Lett. 3: 77-82.   DOI
10 Grange DC, Haan R, Zyl WH. 2010. Engineering cellulolytic ability into bioprocessing organisms. Appl. Microbiol. Biotechnol. 87: 1195-1208.   DOI
11 Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, et al. 2014. Screening of candidate regulators for cellulose and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol. Biofuels 7: 14.   DOI
12 Mao X, Cai T, Olyarchuk J, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787-3793.   DOI
13 Huang J, Chen D, Wei YT, Wang QY, Li ZC, Chen Y, Huang RB. 2014. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci. World J. 2014: 1-8.
14 Kim D, Pertea G, Trapnell G, Pimentel H, Kelley R. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: 295-311.
15 Kromer J, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186: 1769-1784.   DOI
16 Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn. Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate active enzymes. Nat. Biotechnol. 26: 553-560.   DOI
17 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.   DOI
18 Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63: 554-569.
19 Panagiotou G, Christakopoulos P, Olsson L. 2005. Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3 - growth characteristics and metabolite profiling. Enzyme Microb. Technol. 36: 693-699.   DOI
20 Peterson R, Nevalainen H. 2012. Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158: 58-68.   DOI
21 Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. 2013. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 14: 541.   DOI
22 Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.   DOI
23 Seidl V, Seiboth B. 2010. Genetic approaches to improving strain efficiency. Biofuels 1: 343-354.   DOI
24 Skory CD, Freer SN, Bothast RJ. 1997. Screening for ethanol-producing filamentous fungi. Biotechnol. Lett. 19: 203-206.   DOI
25 Stevenson DM, Weimer PJ. 2002. Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol. Appl. Microbiol. Biotechnol. 59: 721-726.   DOI
26 Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 16: 9440-9445.   DOI
27 Wang L, Feng Z, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: 136-138.   DOI
28 Xu Q, Singh A, Himmel ME. 2009. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 20: 364-371.   DOI
29 Yang M , Xu L, Liu Y, Yang P. 2015. RNA-Seq uncovers SNPs and alternative splicing events in Asian lotus (Nelumbo nucifera). PLoS One 10: e0125702.   DOI
30 Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11: R14.   DOI