Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0089

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice  

Jung Ah, Kim (Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Sung-Hee, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Jung Seon, Seo (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Hyuna, Noh (Korea Mouse Phenotyping Center, Seoul National University)
Haengdueng, Jeong (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Jiseon, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Donghun, Jeon (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Jeong Jin, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Dain, On (Korea Mouse Phenotyping Center, Seoul National University)
Suhyeon, Yoon (Korea Mouse Phenotyping Center, Seoul National University)
Sang Gyu, Lee (Interdisciplinary Program for Bioinformatics, Seoul National University)
Youn Woo, Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital)
Hui Jeong, Jang (Department of Nuclear Medicine, Seoul National University Bundang Hospital)
In Ho, Park (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Jooyeon, Oh (Department of Microbiology, Yonsei University College of Medicine)
Sang-Hyuk, Seok (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Yu Jin, Lee (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Seung-Min, Hong (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Se-Hee, An (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Joon-Yong, Bae (Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine)
Jung-ah, Choi (Science Unit, International Vaccine Institute)
Seo Yeon, Kim (Preclinical Research Center, Seoul National University Bundang Hospital)
Young Been, Kim (Preclinical Research Center, Seoul National University Bundang Hospital)
Ji-Yeon, Hwang (Preclinical Research Center, Seoul National University Bundang Hospital)
Hyo-Jung, Lee (Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital)
Hong Bin, Kim (Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
Dae Gwin, Jeong (Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Daesub, Song (Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
Manki, Song (Science Unit, International Vaccine Institute)
Man-Seong, Park (Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine)
Kang-Seuk, Choi (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Jun Won, Park (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Jun-Won, Yun (Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University)
Jeon-Soo, Shin (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Ho-Young, Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital)
Jun-Young, Seo (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Ki Taek, Nam (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Heon Yung, Gee (Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
Je Kyung, Seong (Korea Mouse Phenotyping Center, Seoul National University)
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.
Keywords
immune-mediated response; SARS-CoV-2; transcriptome profiling;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Cleary, S.J., Pitchford, S.C., Amison, R.T., Carrington, R., Robaina Cabrera, C.L., Magnen, M., Looney, M.R., Gray, E., and Page, C.P. (2020). Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br. J. Pharmacol. 177, 4851-4865.   DOI
2 Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.   DOI
3 de Wit, E., van Doremalen, N., Falzarano, D., and Munster, V.J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523-534.   DOI
4 Esposito, S., D'Abrosca, G., Antolak, A., Pedone, P.V., Isernia, C., and Malgieri, G. (2022). Host and viral zinc-finger proteins in COVID-19. Int. J. Mol. Sci. 23, 3711.
5 Harrison, A.G., Lin, T., and Wang, P. (2020). Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 41, 1100-1115.   DOI
6 Heister, P.M. and Poston, R.N. (2020). Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol. Res. Perspect. 8, e00653.
7 Israelow, B., Song, E., Mao, T., Lu, P., Meir, A., Liu, F., Alfajaro, M.M., Wei, J., Dong, H., Homer, R.J., et al. (2020). Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241.
8 Jiang, R.D., Liu, M.Q., Chen, Y., Shan, C., Zhou, Y.W., Shen, X.R., Li, Q., Zhang, L., Zhu, Y., Si, H.R., et al. (2020). Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50-58.e8.   DOI
9 Kirtipal, N., Bharadwaj, S., and Kang, S.G. (2020). From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet. Evol. 85, 104502.
10 Masters, P.S. (2006). The molecular biology of coronaviruses. Adv. Virus Res. 66, 193-292.   DOI
11 McClain, M.T., Constantine, F.J., Henao, R., Liu, Y., Tsalik, E.L., Burke, T.W., Steinbrink, J.M., Petzold, E., Nicholson, B.P., Rolfe, R., et al. (2021). Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nat. Commun. 12, 1079.
12 McCray, P.B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., Jia, H.P., Halabi, C., Sigmund, C.D., et al. (2007). Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813-821.   DOI
13 Mihelic, M., Teuscher, C., Turk, V., and Turk, D. (2006). Mouse stefins A1 and A2 (Stfa1 and Stfa2) differentiate between papain-like endo- and exopeptidases. FEBS Lett. 580, 4195-4199.   DOI
14 Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., and Esmaeilzadeh, A. (2021). COVID-19: virology, biology and novel laboratory diagnosis. J. Gene Med. 23, e3303.
15 Moreau, G.B., Burgess, S.L., Sturek, J.M., Donlan, A.N., Petri, W.A., and Mann, B.J. (2020). Evaluation of K18-hACE2 mice as a model of SARS-CoV-2 infection. Am. J. Trop. Med. Hyg. 103, 1215-1219.   DOI
16 Okeke, E.B. and Uzonna, J.E. (2019). The pivotal role of regulatory T cells in the regulation of innate immune cells. Front. Immunol. 10, 680.
17 Oladunni, F.S., Park, J.G., Pino, P.A., Gonzalez, O., Akhter, A., Allue-Guardia, A., Olmo-Fontanez, A., Gautam, S., Garcia-Vilanova, A., Ye, C., et al. (2020). Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat. Commun. 11, 6122.
18 Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., and Stohr, K. (2003). The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431-2441.   DOI
19 Pairo-Castineira, E., Clohisey, S., Klaric, L., Bretherick, A.D., Rawlik, K., Pasko, D., Walker, S., Parkinson, N., Fourman, M.H., Russell, C.D., et al. (2021). Genetic mechanisms of critical illness in COVID-19. Nature 591, 92-98.   DOI
20 Park, S.H. (2021). An impaired inflammatory and innate immune response in COVID-19. Mol. Cells 44, 384-391.   DOI
21 Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L., and Jingqiang, Z. (2004). The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332-337.   DOI
22 Rha, M.S. and Shin, E.C. (2021). Activation or exhaustion of CD8(+) T cells in patients with COVID-19. Cell. Mol. Immunol. 18, 2325-2333.   DOI
23 Sturm, G., Finotello, F., and List, M. (2020). Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol. Biol. 2120, 223-232.   DOI
24 Tau, G.Z., von der Weid, T., Lu, B., Cowan, S., Kvatyuk, M., Pernis, A., Cattoretti, G., Braunstein, N.S., Coffman, R.L., and Rothman, P.B. (2000). Interferon gamma signaling alters the function of T helper type 1 cells. J. Exp. Med. 192, 977-986.   DOI
25 Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292.e6.   DOI
26 Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20.
27 Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.   DOI
28 Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., et al. (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31.
29 Winkler, E.S., Bailey, A.L., Kafai, N.M., Nair, S., McCune, B.T., Yu, J., Fox, J.M., Chen, R.E., Earnest, J.T., Keeler, S.P., et al. (2020). SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327-1335.   DOI
30 Wolfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Muller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe, C., et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465-469.   DOI
31 Xu, X.W., Wu, X.X., Jiang, X.G., Xu, K.J., Ying, L.J., Ma, C.L., Li, S.B., Wang, H.Y., Zhang, S., Gao, H.N., et al. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 368, m606.
32 Yinda, C.K., Port, J.R., Bushmaker, T., Offei Owusu, I., Purushotham, J.N., Avanzato, V.A., Fischer, R.J., Schulz, J.E., Holbrook, M.G., Hebner, M.J., et al. (2021). K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 17, e1009195.
33 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.   DOI
34 Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830-833.   DOI
35 Zhao, M.M., Yang, W.L., Yang, F.Y., Zhang, L., Huang, W.J., Hou, W., Fan, C.F., Jin, R.H., Feng, Y.M., Wang, Y.C., et al. (2021). Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 6, 134.
36 Zheng, X.S., Wang, Q., Min, J., Shen, X.R., Li, Q., Zhao, Q.C., Wang, X., Jiang, R.D., Geng, R., Chen, Y., et al. (2022). Single-cell landscape of lungs reveals key role of neutrophil-mediated immunopathology during lethal SARS-CoV-2 infection. J. Virol. 96, e0003822.
37 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.    DOI
38 Abdelrahman, Z., Li, M., and Wang, X. (2020). Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses. Front. Immunol. 11, 552909.
39 Badou, A., Basavappa, S., Desai, R., Peng, Y.Q., Matza, D., Mehal, W.Z., Kaczmarek, L.K., Boulpaep, E.L., and Flavell, R.A. (2005). Requirement of voltage-gated calcium channel beta4 subunit for T lymphocyte functions. Science 307, 117-121.   DOI
40 Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.C., Uhl, S., Hoagland, D., Moller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036-1045.e9.   DOI
41 Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507-513.   DOI