• Title/Summary/Keyword: transcriptional regulators

Search Result 95, Processing Time 0.017 seconds

Transcription factors in the maintenance and survival of primordial follicles

  • Lim, Eun-Jin;Choi, Youngsok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.4
    • /
    • pp.127-131
    • /
    • 2012
  • Primordial follicles are formed prenatally in mammalian ovaries, and at birth they are fated to be activated to primary follicles, to be dormant, or to die. During the early stage of folliclulogenesis, the oocyte undergoes dynamic alterations in expression of numerous genes, which are regulated by transcription factors. Several germ-cell specific transcriptional regulators are critical for formation and maintenance of follicles. These transcriptional regulators include: Figla, Lhx8, Nobox, Sohlh1, and Sohlh2. A subset of these transcriptional regulators is mutated in women with ovarian insufficiency and infertility. Establishment of this oocyte pool is essential for fertility. This review focuses on these transcriptional regulators of female primordial follicles.

Identification of Three Positive Regulators in the Geldanamycin PKS Gene Cluster of Streptomyces hygroscopicus JCM4427

  • Kim, Won-Cheol;Lee, Jung-Joon;Paik, Sang-Gi;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1484-1490
    • /
    • 2010
  • In the Streptomyces hygroscopicus JCM4427 geldanamycin biosynthetic gene cluster, five putative regulatory genes were identified by protein homology searching. Among those genes, gel14, gel17, and gel19 are located downstream of polyketide synthase genes. Gel14 and Gel17 are members of the LAL family of transcriptional regulators, including an ATP/GTP-binding domain at the N-terminus and a DNA-binding helix-turn-helix domain at the C-terminus. Gel19 is a member of the TetR family of transcriptional regulators, which generally act to repress transcription. To verify the biological significance of the putative regulators in geldanamycin production, they were individually characterized by gene disruption, genetic complementation, and transcriptional analyses. All three genes were confirmed as positive regulators of geldanamycin production. Specifically, Gel17 and Gel19 are required for gel14 as well as gelA gene expression.

Genetic and Environmental Control of Salmonella Invasion

  • Altier, Craig
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.85-92
    • /
    • 2005
  • An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, $Mg^{2+}$ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

SR Proteins: Binders, Regulators, and Connectors of RNA

  • Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.

Protein Interaction Mapping of Translational Regulators Affecting Expression of the Critical Stem Cell Factor Nos

  • Malik, Sumira;Jang, Wijeong;Kim, Changsoo
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • The germline stem cells of the Drosophila ovary continuously produce eggs throughout the life-span. Intricate regulation of stemness and differentiation is critical to this continuous production. The translational regulator Nos is an intrinsic factor that is required for maintenance of stemness in germline stem cells. Nos expression is reduced in differentiating cells at the post-transcriptional level by diverse translational regulators. However, molecular mechanisms underlying Nos repression are not completely understood. Through three distinct protein-protein interaction experiments, we identified specific molecular interactions between translational regulators involved in Nos repression. Our findings suggest a model in which protein complexes assemble on the 3' untranslated region of Nos mRNA in order to regulate Nos expression at the post-transcriptional level.

Activation of Multiple Transcriptional Regulators by Growth Restriction in Pseudomonas aeruginosa

  • Yeom, Doo Hwan;Im, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.480-486
    • /
    • 2014
  • Growth restriction by antibiotics is a common feature that pathogenic bacteria must overcome for survival. The struggle of bacteria to escape from growth restriction eventually results in development of antibiotic-resistance through the expression of a set of genes. Here we found that some physiologically important transcriptional regulators of Pseudomonas aeruginosa including QscR, a quorum sensing (QS) receptor, SoxR, a superoxide sensor-regulator, and AntR, a regulator of anthranilate-related secondary metabolism, are activated by various growth-restricted conditions. We generated the growth-restricted conditions by various methods, such as overexpression of PA2537 and treatment with antibiotics or disinfectants. The overexpression of PA2537, encoding an acyltransferase homologue, tightly restricted the growth of P. aeruginosa and significantly activated QscR during the growth restriction. Similarly, treatments with gentamycin, tetracycline, and ethanol also activated QscR near their minimal inhibitory concentrations (MICs). Some non-QS regulators, such as AntR and SoxR, were also activated near the MICs in the same conditions. However, LasR and PqsR, other QS receptors of P. aeruginosa, were not activated, suggesting that only a specific set of transcriptional regulators is activated by growth restriction. Since paraquat, a superoxide generator, significantly activated QscR and AntR, we suggest that the oxidative stress generated by growth restriction may be partly involved in this phenomenon.

Regulatory Network of ARF in Cancer Development

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.381-389
    • /
    • 2018
  • ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum

  • Subhadra, Bindu;Ray, Durga;Han, Jong Yun;Bae, Kwang-Hee;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1216-1226
    • /
    • 2015
  • GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR. The binding of different regulators to the glxR promoter was confirmed by EMSA experiments. The expression of glxR was analyzed in detail under various carbon sources in the wild-type and different mutant strains. The sucR and gntR3 deletion mutants showed decreased glxR promoter activities, when compared with the wild type, irrespective of the carbon sources. The promoter activity of glxR was derepressed in the ramB deletion mutant under all the tested carbon sources. These results indicate that SucR and GntR3 are acting as activators of GlxR, while RamB plays a repressor. As expected, the expression of glxR in the cyaB and glxR deletion mutants was derepressed under different media conditions, indicating that GlxR is autoregulated.

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors

  • Jung, Jaejoon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1522-1542
    • /
    • 2019
  • To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.