Browse > Article
http://dx.doi.org/10.4014/jmb.1908.08002

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors  

Jung, Jaejoon (Department of Applied Research, National Marine Biodiversity Institute of Korea)
Lee, Sang Jun (Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.10, 2019 , pp. 1522-1542 More about this Journal
Abstract
To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.
Keywords
Heavy metal; transcriptional regulator; biosensor; synthetic biology; genetic circuit;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arunkumar AI, Campanello GC, Giedroc DP. 2009. Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. Proc. Natl. Acad. Sci. USA 106: 18177-18182.   DOI
2 Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, et al. 2002. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45: 1421-1432.   DOI
3 Jacobsen FE, Kazmierczak KM, Lisher JP, Winkler ME, Giedroc DP. 2011. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3: 38-41.   DOI
4 Outten CE, O'Halloran TV. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292: 2488-2492.   DOI
5 Irving H, Williams RJP. 1948. Order of stability of metal complexes. Nature 162: 746-747.   DOI
6 Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7: 60-72.   DOI
7 Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, et al. 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108: 393-397.   DOI
8 Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, et al. 2006. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 40: 4903-4908.   DOI
9 Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, et al. 2009. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ. Sci. Technol. 43: 637-642.   DOI
10 Kaur H, Kumar R, Babu JN, Mittal S. 2015. Advances in arsenic biosensor development - A comprehensive review. Biosens. Bioelectron. 63: 533-545.   DOI
11 Chang CC, Lin LY, Zou XW, Huang CC, Chan NL. 2015. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res. 43: 7612-7623.   DOI
12 Watanabe S, Miki K, Kita A, Kobayashi K. 2015. Crystal structure of the [2Fe-2S] transcriptional activator SoxR bound to DNA. PNAS 64: C89-C89.
13 Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran T, et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387.   DOI
14 Park S-J, Wireman J, Summers AO. 1992. Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol. 174: 2160-2171.   DOI
15 Harley CB, Reynolds RP. 1987. Analysis of Escherichia coli promoter sequences. Nucleic Acids Res. 15: 2343-2361.   DOI
16 Summers AO. 2009. Damage control: regulating defenses against toxic metals and metalloids. Curr. Opin. Microbiol. 12: 138-144.   DOI
17 Parkhill J, Brown NL. 1990. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 18: 5157-5162.   DOI
18 Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L, Zehavi Y, Moskovitz Y, et al. 2017. Structural and dynamics characterization of the MerR family metalloregulator CueR in its repression and activation states. Structure 25: 988-996.   DOI
19 Canalizo-Hernandez M, Schatz GC, Mondragon A, Philips SJ, O'Halloran T V, Yildirim I. 2015. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349: 877-881.   DOI
20 Zhang APP, Pigli YZ, Rice PA. 2010. Structure of the LexA-DNA complex and implications for SOS box measurement. Nature 466: 883.   DOI
21 Browning DF, Busby SJW. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 57.   DOI
22 Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S. 1993. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol. Lett. 110: 231-238.   DOI
23 Yu S, Teng C, Bai X, Liang J, Song T, Dong L, et al. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil. J. Microbiol. Biotechnol. 27: 1500-1512.   DOI
24 Xu C, Shi W, Rosen BP. 1996. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J. Biol. Chem. 271: 2427-2432.   DOI
25 Liu T, Golden JW, Giedroc DP. 2005. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the cyanobacterium Anabaena is regulated by AztR, an ${\alpha}3N$ ArsR/SmtB metalloregulator. Biochemistry 44: 8673-8683.   DOI
26 Sun Y, Wong MD, Rosen BP. 2001. Role of cysteinyl residues in sensing Pb (II), Cd (II), and Zn (II) by the plasmid pI258 CadC repressor. J. Biol. Chem. 276: 14955-14960.   DOI
27 Nucifora G, Chu L, Misra TK, Silver S. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544-3548.   DOI
28 Endo G, Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177: 4437-4441.   DOI
29 Wang Y, Kendall J, Cavet JS, Giedroc DP. 2010. Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtRSc from Streptomyces coelicolor. Biochemistry 49: 6617-6626.   DOI
30 Harvie DR, Andreini C, Cavallaro G, Meng W, Connolly BA, Yoshida K, et al. 2006. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a noneffector metal. Mol. Microbiol. 59: 1341-1356.   DOI
31 Thelwell C, Robinson NJ, Turner-Cavet JS. 1998. An SmtBlike repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95: 10728-10733.   DOI
32 Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, et al. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271(5253): 1247-1254.   DOI
33 Wang D, Huang S, Liu P, Liu X, He Y, Chen W, et al. 2016. Structural analysis of the Hg(II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Sci. Rep. 6: 33391.   DOI
34 Gajiwala KS, Burley SK. 2000. Winged helix proteins. Curr. Opin. Struct. Biol. 10: 110-116.   DOI
35 Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ. 2002. A nickel-cobalt-sensing ArsR-SmtB family repressor contributions of cytosol and effector binding sites to metal selectivity. J. Biol. Chem. 277: 38441-38448.   DOI
36 Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. 2017. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals 30: 459-503.   DOI
37 Baumann B, van der Meer JR. 2007. Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J. Agric. Food Chem. 55: 2115-2120.   DOI
38 Waldron KJ, Rutherford JC, Ford D, Robinson NJ. 2009. Metalloproteins and metal sensing. Nature 460: 823-830.   DOI
39 Ma Z, Jacobsen FE, Giedroc DP. 2009. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109: 4644-4681.   DOI
40 Wu J, Rosen BP. 1993. Metalloregulated expression of the ars operon. J. Biol. Chem. 268: 52-58.   DOI
41 Ye J, Kandegedara A, Martin P, Rosen BP. 2005. Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J. Bacteriol. 187: 4214-4221.   DOI
42 Reyes-Caballero H, Lee CW, Giedroc DP. 2011. Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR. Biochemistry 50: 7941-7952.   DOI
43 Reyes-Caballero H, Campanello GC, Giedroc DP. 2011. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem. 156: 103-114.   DOI
44 Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 1205-1218.   DOI
45 Condee CW, Summers AO. 1992. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J. Bacteriol. 174: 8094-8101.   DOI
46 Ansari AZ, Bradner JE, O'halloran TV. 1995. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374: 370.   DOI
47 Ansari AZ, Chael ML, O'Halloran TV. 1992. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355: 87.   DOI
48 Outten CE, Outten FW, O'Halloran TV. 1999. DNA distortion mechanism for transcriptional activation by ZntR, a Zn (II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem. 274: 37517-37524.   DOI
49 Goldbeter A, Koshland DE. 1981. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78: 6840-6844.   DOI
50 Ralston DM, O'Halloran T V. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87: 3846-3850.   DOI
51 Parks JM, Smith JC. 2016. Modeling mercury in proteins, pp. 103-122. In Methods in enzymology. Elsevier.
52 Outten FW, Outten CE, Hale J, O'Halloran T V. 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275: 31024-31029.   DOI
53 Campbell DR, Chapman KE, Waldron KJ, Tottey S, Kendall S, Cavallaro G, et al. 2007. Mycobacterial cells have dual nickel-cobalt sensors sequence relationships and metal sites of metal-responsive repressors are not congruent. J. Biol. Chem. 282: 32298-32310.   DOI
54 Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, et al. 1999. ZntR is a Zn(II)-responsive MerRlike transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893-902.   DOI
55 Turner JS, Robinson NJ. 1995. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Ind. Microbiol. 14: 119-125.   DOI
56 Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, et al. 2017. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb. Biotechnol. 10: 1690-1701.   DOI
57 Kuroda M, Hayashi H, Ohta T. 1999. Chromosomedetermined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol. Immunol. 43: 115-125.   DOI
58 Singh VK, Xiong A, Usgaard TR, Chakrabarti S, Deora R, Misra TK, et al. 1999. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 33: 200-207.   DOI
59 Murphy JN, Saltikov CW. 2009. The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. strain ANA-3. J. Bacteriol. 191: 6722-6731.   DOI
60 Arredondo M, Nunez MT. 2005. Iron and copper metabolism. Mol. Aspects Med. 26: 313-327.   DOI
61 Solioz M, Odermatt A, Krapf R. 1994. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett. 346: 44-47.   DOI
62 Kaur H, Kumar R, Babu JN, Mittal S. 2015. Advances in arsenic biosensor development-a comprehensive review. Biosens. Bioelectron. 63: 533-545.   DOI
63 Dudev T, Lim C. 2014. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev. 114: 538-556.   DOI
64 Chen PR, He C. 2008. Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol. 12: 214-221.   DOI
65 Nordstrom DK. 2017. Worldwide occurrences of arsenic in ground water. Science 2143-2144.
66 Hobman JL, Julian DJ, Brown NL. 2012. Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, $P_{pbrA}$, from Cupriavidus metallidurans CH34. BMC Microbiol. 12: 109.   DOI
67 Checa SK, Espariz M, Audero MEP, Botta PE, Spinelli S V, Soncini FC. 2007. Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 63: 1307-1318.   DOI
68 Misra TK, Brown NL, Fritzinger DC, Pridmore RD, Barnes WM, Haberstroh L, et al. 1984. Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA 81: 5975-5979.   DOI
69 Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. 1990. Organomercurial lyase and mercuric ion reductase: nature's mercury detoxification catalysts. Acc. Chem. Res. 23: 301-308.   DOI
70 Capdevila DA, Edmonds KA, Giedroc DP. 2017. Metallochaperones and metalloregulation in bacteria. Essays Biochem. 61: 177-200.   DOI
71 VanZile ML, Chen X, Giedroc DP. 2002. Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. Biochemistry 41: 9776-9786.   DOI
72 Teichert F, Bastolla U, Porto M. 2007. SABERTOOTH: protein structural alignment based on a vectorial structure representation. BMC Bioinformatics 8: 425.   DOI
73 Shi W, Wu J, Rosen BP. 1994. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 269: 19826-19829.   DOI
74 Ordonez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, et al. 2008. Evolution of metal(loid) binding sites in transcriptional regulators. J. Biol. Chem. 283: 25706-25714.   DOI
75 Qin J, Fu H-L, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, et al. 2007. Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J. Biol. Chem. 282: 34346-34355.   DOI
76 Hu mbert MV, R asia RM, Checa SK, S oncini FC. 2013. Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J. Biol. Chem. 288: 20510-20519.   DOI
77 Wang Y, Hemmingsen L, Giedroc DP. 2005. Structural and functional characterization of Mycobacterium tuberculosis CmtR, a Pb(II)/Cd(II)-sensing SmtB/ArsR metalloregulatory repressor. Biochemistry 44: 8976-8988.   DOI
78 Pennella MA, Arunkumar AI, Giedroc DP. 2006. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA. J. Mol. Biol. 356: 1124-1136.   DOI
79 Ibanez MM, Checa SK, Soncini FC. 2015. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 197: 1606-1613.   DOI
80 Gao C, Yang M, He Z-G. 2012. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 7: e36255.   DOI
81 Blundell MR, Wild DG. 1969. Inhibition of bacterial growth by metal salts. A survey of effects on the synthesis of ribonucleic acid and protein. Biochem. J. 115: 207-212.   DOI
82 Gupta A, Whitton BA, Morby AP, Huckle JW, Robinson NJ. 1992. Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc. B Biol. Sci. 248: 273-281.   DOI
83 Ferguson AD, Deisenhofer J. 2004. Metal import through microbial membranes. Cell 116: 15-24.   DOI
84 Parkhill J, Ansari AZ, Wright JG, Brown NL, O'Halloran TV. 1993. Construction and characterization of a mercuryindependent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO J. 12: 413-421.   DOI
85 Lund PA, Ford SJ, Brown NL. 1986. Transcriptional regulation of the mercury-resistance genes of transposon Tn501. Microbiology 132: 465-480.   DOI
86 O'Halloran T V, Frantz B, Shin MK, Ralston DM, Wright JG. 1989. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119-129.   DOI
87 Date A, Pasini P, Sangal A, Daunert S. 2010. Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis. Anal. Chem. 82: 6098-6103.   DOI
88 Siegfried K, Endes C, Bhuiyan AFMK, Kuppardt A, Mattu sch J, van der Meer JR, et al. 2012. Field testing of arsenic in groundwater samples of Bangladesh using a test kit based on lyophilized bioreporter bacteria. Environ. Sci. Technol. 46: 3281-3287.   DOI
89 Kim HJ, Jeong H, Lee SJ. 2017. Synthetic biology for microbial heavy metal biosensors. J. Biotechnol. 266: 72-76.   DOI
90 Bereza-Malcolm LT, Mann G, Franks AE. 2015. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth. Biol. 4: 535-546.   DOI
91 Livrelli V, Lee Iw, Summers AO. 1993. In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants. J. Biol. Chem. 268: 2623-2631.   DOI
92 Ibanez MM, Cerminati S, Checa SK, Soncini FC. 2013. Dissecting the metal selectivity of MerR monovalent metal ion sensors in Salmonella. J. Bacteriol. 195: 3084-3092.   DOI
93 Utschig LM, Bryson JW, O'halloran TV. 1995. Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268: 380-385.   DOI
94 Shewchuk LM, Helmann JD, Ross W, Park SJ, Summers AO, Walsh CT. 1989. Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury (II) binding domains. Biochemistry 28: 2340-2344.   DOI
95 Caguiat JJ, Watson AL, Summers AO. 1999. Cd (II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181: 3462-3471.   DOI
96 Cook WJ, Kar SR, Taylor KB, Hall LM. 1998. Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. J. Mol. Biol. 275: 337-346.   DOI
97 Li J, Mandal G, Rosen BP. 2016. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe 39: 117-123.   DOI
98 Liu T, Nakashima S, Hirose K, Shibasaka M, Katsuhara M, Ezaki B, et al. 2004. A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J. Biol. Chem. 279: 17810-17818.   DOI
99 Pennella MA, Shokes JE, Cosper NJ, Scott RA, Giedroc DP. 2003. Structural elements of metal selectivity in metal sensor proteins. Proc. Natl. Acad. Sci. USA 100: 3713-3718.   DOI
100 VanZile ML, Chen X, Giedroc DP. 2002. Structural characterization of distinct ${\alpha}3N$ and ${\alpha}5$ metal sites in the cyanobacterial zinc sensor SmtB. Biochemistry 41: 9765-9775.   DOI
101 Eicken C, Pennella MA, Chen X, Koshlap KM, VanZile ML, Sacchettini JC, et al. 2003. A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. J. Mol. Biol. 333: 683-695.   DOI
102 Merulla D, Meer JR Van Der. 2016. Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites.   DOI
103 Stocker J, Balluch D. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water 37: 4743-4750.   DOI
104 Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S. 1997. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal. Chem. 69: 16-20.   DOI
105 Merulla D, Buffi N, Beggah S, Geiser M, Renaud P, Meer JR Van Der. 2013. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr. Opin. Biotechnol. 24: 534-541.   DOI
106 Lewis DEA, Adhya S. 2015. Molecular mechanisms of transcription initiation at gal promoters and their multilevel regulation by GalR, CRP and DNA loop. Biomolecules 5: 2782-2807.   DOI
107 Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, et al. 2017. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 12: e0178180.   DOI
108 Fernandez M, Morel B, Ramos JL, Krell T. 2016. Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl. Environ. Microbiol. 82: 4133-4144.   DOI
109 Amin A, Latif Z. 2017. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J. Basic Microbiol. 57: 204-217.   DOI
110 Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF. 2019. Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can. J. Microbiol. 65: 1-14.   DOI
111 Kandegedara A, Thiyagarajan S, Kondapalli KC, Stemmler TL, Rosen BP. 2009. Role of bound Zn(II) in the C adC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J. Biol. Chem. 284: 14958-14965.   DOI
112 Hakkila KM, Nikander PA, Junttila SM, Lamminmaki UJ, Virta MP. 2011. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution. Appl. Environ. Microbiol. 77: 6215-6224.   DOI
113 Chander M, Demple B. 2004. Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. J. Biol. Chem. 279: 41603-41610.   DOI
114 Moinier D, Slyemi D, Byrne D, Lignon S, Lebrun R, Talla E, et al. 2014. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans. Appl. Environ. Microbiol. 80: 6413-6426.   DOI
115 Slyemi D, Moinier D, Talla E, Bonnefoy V. 2013. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Extremophiles 17: 911-920.   DOI
116 Busenlehner LS, Weng TC, Penner-Hahn JE, Giedroc DP. 2002. Elucidation of primary (${\alpha}3N$) and vestigial (${\alpha}5$) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J. Mol. Biol. 319: 685-701.   DOI
117 Sun Y, Wong MD, Rosen BP. 2002. Both metal binding sites in the h omodimer a re r equ ired f or m etalloregulation by the CadC repressor. Mol. Microbiol. 44: 1323-1329.   DOI
118 Turner JS, Glands PD, Samson ACR, Robinson NJ. 1996. $Zn^{2+}$-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res. 24: 3714-3721.   DOI
119 Busenlehner LS, Cosper NJ, Scott RA, Rosen BP, Wong MD, Giedroc DP. 2001. Spectroscopic properties of the metalloregulatory Cd (II) and Pb (II) sites of S. aureus pI258 CadC. Biochemistry 40: 4426-4436.   DOI
120 Matsui K, Yoshinami S, Narita M, Chien M-F, Phung LT, Silver S, et al. 2016. Mercury resistance transposons in Bacilli strains from different geographical regions. FEMS Microbiol. Lett. 363(5): fnw013.   DOI
121 Barrineau P, Gilbert P, Jackson WJ, Jones CS, Summers AO, Wisdom S. 1984. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J. Mol. Appl. Genet. 2: 601-619.
122 Stanisich VA, Bennett PM, Richmond MH. 1977. Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bacteriol. 129: 1227-1233.   DOI
123 Barkay T, Miller SM, Summers AO. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355-384.   DOI
124 Sone Y, Nakamura R, Pan-Hou H, Itoh T, Kiyono M. 2013. Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol. Pharm. Bull. 36(11): 1835-1841.   DOI
125 Hobman JL, Wilkie J, Brown NL. 2005. A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18: 429-436.   DOI
126 Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle. Nature 1-4.
127 Tani C, Inoue K, Tani Y, Harun-ur-Rashid M, Azuma N, Ueda S, et al. 2009. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic. J. Biosci. Bioeng. 108: 414-420.   DOI
128 Nistala GJ, Wu K, Rao C V, Bhalerao KD. 2010. A modular positive feedback-based gene amplifier. J. Biol. Eng. 4: 1-8.   DOI
129 Yoon Y, Kang Y, Lee W, Oh K-C, Jang G, Kim B-G. 2018. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis. J. Microbiol. Biotechnol. 28: 323-329.   DOI
130 Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, et al. 2016. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens. Bioelectron. 79: 701-708.   DOI
131 Wu CH, Le D, Muchlandani A, Chen W. 2009. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnol. Prog. 25: 898-903.   DOI
132 Siuti P, Yazbek J, Lu TK. 2013. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31: 448-452.   DOI
133 Berset Y, Merulla D, Hatzimanikatis V, Meer JR Van Der. 2017. Mechanistic modeling of genetic circuits for ArsR arsenic regulation. ACS Synth. Biol. 6: 862-874.   DOI
134 Yagur-Kroll S, Lalush C, Rosen R, Bachar N, Moskovitz Y, Belkin S. 2014. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Microbiol. Biotechnol. 98: 885-895.   DOI
135 Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. 2016. Genetic circuit design automation. Science 352(6281): aac7341   DOI
136 Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J. 2012. A sensing array of radically coupled genetic "biopixels." Nature 481: 39-44.   DOI
137 Lloyd JR, Lovley DR. 2001. Microbial detoxification of metals and radionuclides. Curr. Opin. Biotechnol. 12: 248-253.   DOI