Genetic and Environmental Control of Salmonella Invasion

  • Altier, Craig (College of Veterinary Medicine, North Carolina State University)
  • Published : 2005.02.28

Abstract

An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, $Mg^{2+}$ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

Keywords

References

  1. Altier, C; M. Suyemoto, and S.D. Lawhon. 2000a. Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infect. Immun. 68, 6790-6797.
  2. Altier, C., M. Suyemoto, AI. Ruiz, KD. Burnham, and R. Maurer. 2000b. Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol. Microbiol. 35, 635-646.
  3. Argenzio, R.A and M. Southworth. 1975. Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am. J. Physiol. 228, 454-460.
  4. Argenzio, RA, M. Southworth, and C.E. Stevens. 1974. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol. 226, 1043-1050.
  5. Bader, M.W., w.w. Navarre, W. Shiau, H. Nikaido, J.G. Frye, M. McClelland, nc Fang, and S.I. Miller. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50, 219-230.
  6. Bajaj, Y.,e. Hwang, and e.A Lee. 1995. hilA is a novel ompRltoxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol. Microbiol. 18, 715-727.
  7. Bajaj, Y., RL. Lucas, C. Hwang, and CA. Lee. 1996. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbial. 22, 703-714.
  8. Baxter, M.A., T.F. Fahlen, RL. Wilson, and B.D. Jones. 2003. HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect. Immun. 71, 1295-1305.
  9. Behlau, I. and S.I. Miller. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J. Bacteriol. 175, 4475-4484.
  10. Boddicker, J.D. and B.D. Jones. 2004. Lon protease activity causes down-regulation of Salmonella pathogenicity island I invasion gene expression after infection of epithelial cells. Inject. lmmun. 72, 2002-2013.
  11. Boddicker, J.D., B.M. Knosp, and B.D. Jones. 2003. Transcription of the Salmonella invasion gene activator, hilA, requires HilD activation in the absence of negative regulators. J. Bacteriol. 185, 525-533.
  12. Clements, M.O., S. Eriksson, A Thompson, S. Lucchini, J.e. Hinton, S. Nonnark, and M. Rhen. 2002. Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc. Natl. Acad. Sci. USA 99, 8784-8789.
  13. Darwin, KH. and Y.L. Miller. 1999. InvF is required for expression of genes encoding proteins secreted by the SPII type III secretion apparatus in Salmonella typhimurium. 1. Bacteriol. 181, 4949-4954.
  14. Durant, J.A., D.E. Corrier, and S.e. Ricke. 2000. Short-chain volatile fatty acids modulate the expression of the hilA and invF genes of Salmonella typhimurium. J. Food. Prot. 63,573-578.
  15. Eichelberg, K and J.E. Galan. 1999. Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island I (SPI-l)-encoded transcriptional activators InvF and hilA. Infect. Immun. 67, 4099-4105.
  16. Eichelberg, K, W.O. Hardt, and J.E. Galan. 1999. Characterization of SprA, an AraC-like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island I. Mol. Microbiol. 33, 139-152.
  17. Ellermeier, c.n and J.M. Slauch. 2003. RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 185, 5096-5108.
  18. Ellermeier, CD. and J.M. Siauch. 2004. RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system. J. Bacterial. 186, 68-79.
  19. Fahlen, T.E, N. Mathur, and B.D. Jones. 2000. Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium. FEMS Immunol. Med. Microbiol. 28, 25-35.
  20. Fahlen, TE, R.L. Wilson, J.D. Boddicker, and B.D. Jones. 2001. Hha is a negative modulator of transcription of hilA, the Salmonella enterica serovar Typhimurium invasion gene transcriptional activator. J. Bacterial. l83, 6620-6629.
  21. Fordtran, lS. and EJ. Ingelfinger. 1968. Absorption of water, electrolytes, and sugars from the human gut, p. 1457-1490. In e. E Code and W. Heidel (eds.), Handbook of Physiology. Waverly Press, Baltimore.
  22. Galan, lE. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol. 17, 53-86.
  23. Galan, J.E. and R. Curtiss, 3rd. 1990. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 58, 1879-1885.
  24. Garcia Vescovi, E., EC. Soncini, and E.A. Groisman. 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165-174.
  25. Ismail, TM., e.A. Hart, and A.G McLennan. 2003. Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J. BioI. Chem. 278, 32602-32607.
  26. Iyoda, S., T Kamidoi, K. Hirose, K. Kutsukake, and H. Watanabe. . 200 I. A flagellar gene jliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30,81-90.
  27. Johnston, C., D.A. Pegues, C.I. Hueck, A. Lee, and ,S.1. Miller. 1996. Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated responseregulator superfamily. Mol. Microbiol. 22, 715-727.
  28. Jones, B.D. and S. Falkow. 1994. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62, 3745-3752.
  29. Jones, B.D., N. Ghori, and S. Falkow. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15-23.
  30. Jones, B.D., N. Ghori, and S. Falkow. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15-23.
  31. Kubori, T, Y. Matsushima, D. Nakamura, 1 Uralil, M. Lara-Tejero, A. Sukhan, J.E. Galan, and S.1. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602-605.
  32. Lawhon, S.D., r.o Frye, M. Suyemoto, S. Porwollik, M. McClelland, and C. Altier. 2003. Global regulation by CsrA in Salmonella typhimurium. Mol. Microbial. 48, 1633-1645.
  33. Lawhon, S.D., R. Maurer, M. Suyemoto, and e. Altier. 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarAiSirA. Mol. Microbial. 46, 1451-1464.
  34. Liu, M.Y., G Gui, B. Wei, J.E Preston, 3rd, L. Oakford, U. Yuksel, D.P. Giedroc, and T Romeo. 1997. The RNA molecule CsrBbinds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272, 17502-17510.
  35. Liu, M.¥., H. Yang, and T Romeo. 1995. The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J. Bacterial. 177, 26632672.
  36. Lostroh, e.P., v. Bajaj, and C.A. Lee. 2000. The cis requirements for transcriptional activation by HilA, a virulence determinant encoded on SPI-1. Mol. Microbial. 37,300-315.
  37. Lostroh, e.P. and e.A. Lee. 2001. The HilA box and sequences outside it determine the magnitude of HilA-dependent activation of Pp,gH from Salmonella pathogenicity island 1. J. Bacterial. 183, 4876-4885.
  38. Lucas, R.L. and e.A. Lee. 2001. Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. J. Bacterial. 183, 2733-2745.
  39. Lucas, R.L., cr. Lostroh, e.e. DiRusso, M.P. Spector, B.L. Wanner, and e.A. Lee. 2000. Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. 1. Bacterial. 182, 1872-1882.
  40. Molofsky, A.B. and M.S. Swanson. 2004. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbial. 53, 29-40.
  41. Nakayama, S., A. Kushiro, T Asahara, R. Tanaka, L. Hu, D.J. Kopecko, and H. Watanabe. 2003. Activation of hilA expression at low pH requires the signal sensor CpxA, but not the cognate response regulator CpxR, in Salmonella enterica serovar Typhimurium. Microbiology 149,2809-2817.
  42. Olekhnovich, LN. and R.I. Kadner. 2004. Contribution of the RpoA C-terminal domain to stimulation of the Salmonella enterica hilA promoter by HilC and HiID. J. Bacterial. 186,3249-3253.
  43. Pizarro-Cerda, J. and K. Tedin. 2004. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol. Microbiol. 52, 1827-1844.
  44. Prouty, A.M. and lS. Gunn. 2000. Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile. Infect. Immun. 68, 6763-6769.
  45. Rakeman, lL., H.R. Bonifield, and S.1. Miller. 1999. A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J. Bacterial. 181,3096-3104.
  46. Romeo, T. 1998. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbial. 29, 1321-1330.
  47. Russell, D.A., lS. Dooley, and R.W. Haylock. 2004. The steadystate orgA specific mRNA levels in Salmonella enterica serovar Typhimurium are repressed by oxygen during logarithmic growth phase but not early-stationary phase. FEMS Microbial. Lett. 236, 65-72.
  48. Schechter, L.M., S.M. Damrauer, and e.A. Lee. 1999. Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream 'of the hilA promoter. Mol. Microbial. 32, 629-642.
  49. Schechter, L.M., S. Jain, S. Akbar, and C.A. Lee. 2003. The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect. Immun. 71, 5432-5435.
  50. Schechter, L.M. and C.A. Lee. 2001. AraC/XyIS family members, HilC and HiID, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol. Microbial. 40, 1289-1299.
  51. Song, M., H.I. Kim, E.Y. Kim, M. Shin, H.e. Lee, Y. Hong, J.H.Rhee, H. Yoon, S. Ryu, S. Lim, and H.E. Choy. 2004. ppGppdependent stationary phase induction of genes on Salmonella pathogenicity island 1. J. Biol. Chem. 279, 34183-34190.
  52. Takaya, A., M. Suzuki, H. Matsui, T. Tomoyasu, H. Sashinami, A Nakane, and T. Yamamoto. 2003. Lon, a stress-induced ATPdependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect. Immun. 71, 690-696.
  53. Takaya, A, T. Tomoyasu, A Tokumitsu, M. Morioka, and T. Yamamoto. 2002. The ATP-dependent Ion protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J. Bacteriol. i84, 224"232.
  54. Teplitski, M., R.I. Goodier, and B.M. Ahmer. 2003. Pathways leading from BarAiSirA to motility and virulence gene expression in Salmonella. J. Bacterial. 185, 7257-7265.
  55. Wei, B.L., AM. Brun-Zinkernagel, r.w Simecka, B.M. Pruss, P. Babitzke, and T. Romeo. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbial. 40, 245-256.
  56. Weilbacher, T., K. Suzuki, AX Dubey, X. Wang, S. Gudapaty, I. Morozov, C.S. Baker, D. Georgellis, P. Babitzke, and T. Romeo. 2003. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbial. 48, 657670.
  57. Wilson, R.L., SJ. Libby, AM. Freet, J.D. Boddicker, T.E Fahlen, and B.D. Jones. 2001. Fis, a DNA nucleoid-associated protein, IS involved In Salmonella typhimurium SPI-l invasion gene expression. Mol. Microbial. 39, 79-88.