Browse > Article
http://dx.doi.org/10.4014/jmb.1502.02053

Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum  

Subhadra, Bindu (Department of Biomedicinal Science and Biotechnology, Paichai University)
Ray, Durga (Department of Biomedicinal Science and Biotechnology, Paichai University)
Han, Jong Yun (Department of Biomedicinal Science and Biotechnology, Paichai University)
Bae, Kwang-Hee (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnolgy (KRIBB))
Lee, Jung-Kee (Department of Biomedicinal Science and Biotechnology, Paichai University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.8, 2015 , pp. 1216-1226 More about this Journal
Abstract
GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR. The binding of different regulators to the glxR promoter was confirmed by EMSA experiments. The expression of glxR was analyzed in detail under various carbon sources in the wild-type and different mutant strains. The sucR and gntR3 deletion mutants showed decreased glxR promoter activities, when compared with the wild type, irrespective of the carbon sources. The promoter activity of glxR was derepressed in the ramB deletion mutant under all the tested carbon sources. These results indicate that SucR and GntR3 are acting as activators of GlxR, while RamB plays a repressor. As expected, the expression of glxR in the cyaB and glxR deletion mutants was derepressed under different media conditions, indicating that GlxR is autoregulated.
Keywords
Corynebacterium glutamicum; GlxR; adenylate cyclase; SucR; RamB; GntR3;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A. 2008. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol. Lett. 281: 190-197.   DOI
2 Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186: 2798-2809.   DOI
3 Engels V, Wendisch VF. 2007. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189: 2955-2966.   DOI
4 Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M. 2008. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67: 305-322.   DOI
5 Fujita Y, Fujita T. 1987. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. USA 84: 4524-4528.   DOI
6 Han SO, Inui M, Yukawa H. 2008. Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 154: 3073-3083.   DOI
7 Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI
8 Ikeda M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
9 Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188: 2554-2567.   DOI
10 Eggeling L, Reyes O. 2005. Experiments, pp. 535-566. In Eggeling L, Bott M (eds.). Handbook of Corynebacterium glutamicum, CRC Press, Boca Raton, USA.
11 Botsford JL, Harman JG. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56: 100-122.
12 Auchter M, Laslo T, Fleischer C, Schiller L, Arndt A, Gaigalat L, et al. 2011. Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum. J. Biotechnol. 152: 77-86.   DOI
13 Baumbach J. 2007. CoryneRegNet 4.0 - A reference database for corynebacterial gene regulatory networks. BMC Bioinformatics 8: 429.   DOI
14 Blombach B, Cramer A, Eikmanns BJ, Schreiner M. 2009. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 16: 236-239.   DOI
15 Brückner R, Titgemeyer F. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141-148.   DOI
16 Bussmann M, Emer D, Hasenbein S, Degraf S, Eikmanns BJ, Bott M. 2009. Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J. Biotechnol. 143: 173-182.   DOI
17 Cha PH, Park SY, Moon MW, Subhadra B, Oh TK, Kim E, et al. 2010. Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl. Microbiol. Biotechnol. 85: 1061-1068.   DOI
18 Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ. 2008. Ethanol catabolism in Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 15: 222-233.   DOI
19 Cho HY, Lee SG, Hyeon JE, Han SO. 2010. Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 401: 300-305.   DOI
20 Auchter M, Arndt A, Eikmanns BJ. 2009. Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J. Biotechnol. 140: 84-91.   DOI
21 Arndt A, Eikmanns BJ. 2007. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol. 189: 7408-7416.   DOI
22 Arndt A, Eikmanns BJ. 2008. Regulation of carbon metabolism in Corynebacterium glutamicum, pp. 155-182. In Burkovski A (eds.), Corynebacteria: Genomics and Molecular Biology, Caister Academic Press, Norfolk UK.
23 Toyoda K, Teramoto H, Inui M, Yukawa H. 2009. Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J. Bacteriol. 191: 968-977.   DOI
24 Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J. 2002. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr. Microbiol. 45: 362-367.   DOI
25 Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ. 1998. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30: 33-46.   DOI
26 Toyoda K, Teramoto H, Gunji W, Inui M, Yukawa H. 2013. Involvement of regulatory interactions among global regulators GlxR, SugR, and RamA in expression of ramA in Corynebacterium glutamicum. J. Bacteriol. 195: 1718-1726.   DOI
27 Toyoda K, Teramoto H, Inui M, Yukawa H. 2011. Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J. Bacteriol. 193: 4123-4133.   DOI
28 Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Pühler A. 1990. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J. Bacteriol. 172: 1663-1666.   DOI
29 Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, et al. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 1042-1058.   DOI
30 Shaw WV. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria Methods Enzymol. 43: 737-755.   DOI
31 Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73.   DOI
32 Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ. 2005. E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J. Bacteriol. 187: 6005-6018.   DOI
33 Simon R, Priefer U, Pühler A. 1983. A broad host range vector mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1: 784-791.   DOI
34 Sindelar G, Wendisch VF. 2007. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl. Microbiol. Biotechnol. 76: 677-689.   DOI
35 Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130.   DOI
36 Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. 2006. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J. Bacteriol. 188: 409-423.   DOI
37 Subhadra B, Lee JK. 2013. Elucidation of the regulation of ethanol catabolic genes and ptsG using a glxR and adenylate cyclase gene (cyaB) deletion mutants of Corynebacterium glutamicum ATCC 13032. J. Microbiol. Biotechnol. 23: 7.   DOI
38 Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L. 2011. Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J. Biotechnol 154: 140-148.   DOI
39 Kronemeyer W, Peekhaus N, Krämer R, Sahm H, Eggeling L. 1995. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J. Bacteriol. 177: 1152-1158.   DOI
40 Liberman E, Saffen D, Roseman S, Peterkofsky A. 1986. Inhibition of E. coli adenylate cyclase activity by inorganic orthophosphate is dependent on IIIglc of the phosphoenolpyruvate: glycose phosphotransferase system. Biochem. Biophys. Res. Commun. 141: 1138-1144.   DOI
41 Park SD, Lee SN, Park IH, Choi IH, Jeong JS, Kim WK, et al. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
42 Park SY, Moon MW, Subhadra B, Lee JK. 2010. Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol. Lett. 304: 107-115.   DOI
43 Petersen S, Young GM. 2002. Essential role for cyclic AMP and its receptor protein in Yersinia enterocolitica virulence. Infect. Immun. 70: 3665-3672.   DOI
44 Kim HJ, Kim TH, Kim Y, Lee HS. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186: 3453-3460.   DOI
45 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
46 Kohl TA, Tauch A. 2009. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J. Biotechnol. 143: 239-246.   DOI
47 Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, et al. 2013. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology 159: 12-22.   DOI
48 Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A. 2008. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J. Biotechnol. 135: 340-350.   DOI
49 Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H. 2007. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl. Microbiol. Biotechnol. 76: 1347-1356.   DOI
50 Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.   DOI