Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0100

Regulatory Network of ARF in Cancer Development  

Ko, Aram (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Han, Su Yeon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Song, Jaewhan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Abstract
ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.
Keywords
ARF; E3 ligases; post-translational modification; transcriptional regulation; tumorigenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ha, L., Ichikawa, T., Anver, M., Dickins, R., Lowe, S., Sharpless, N.E., Krimpenfort, P., Depinho, R.A., Bennett, D.C., Sviderskaya, E.V., et al. (2007). ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc. Natl. Acad. Sci. USA 104, 10968-10973.   DOI
2 Davy, P., Nagata, M., Bullard, P., Fogelson, N.S., and Allsopp, R. (2009). Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 30, 539-542.   DOI
3 Dayde, D., Guerard, M., Perron, P., Hatat, A.S., Barrial, C., Eymin, B., and Gazzeri, S. (2016). Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival. Oncogene 35, 3986-3994.   DOI
4 DeGregori, J., Leone, G., Miron, A., Jakoi, L., and Nevins, J.R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94, 7245-7250.   DOI
5 Kuo, M.L., den Besten, W., Bertwistle, D., Roussel, M.F., and Sherr, C.J. (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 18, 1862-1874.   DOI
6 Jacobs, J.J., Keblusek, P., Robanus-Maandag, E., Kristel, P., Lingbeek, M., Nederlof, P.M., van Welsem, T., van de Vijver, M.J., Koh, E.Y., Daley, G.Q., et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291-299.   DOI
7 Ito, T., Nishida, N., Fukuda, Y., Nishimura, T., Komeda, T., and Nakao, K. (2004). Alteration of the p14(ARF) gene and p53 status in human hepatocellular carcinomas. J. Gastroenterol. 39, 355-361.   DOI
8 Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A., and van Lohuizen, M. (1999a). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164-168.   DOI
9 Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A., and van Lohuizen, M. (1999b). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678-2690.   DOI
10 Jarrard, D.F., Yeager, T.R., Nassif, N., Sandefur, C.E., and Reznikoff, C.A. (1998). Loss of either p16/CDKN2 or retinoblastoma is required for overcoming senescence in human prostate epithelial cells. J. Urol. 159, 71-71.   DOI
11 Kalinichenko, V.V., Major, M.L., Wang, X., Petrovic, V., Kuechle, J., Yoder, H.M., Dennewitz, M.B., Shin, B., Datta, A., Raychaudhuri, P., et al. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 18, 830-850.   DOI
12 Kamal, A., Boehm, M.F., and Burrows, F.J. (2004). Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10, 283-290.   DOI
13 Lindstrom, M.S., and Wiman, K.G. (2003). Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22, 4993-5005.   DOI
14 Kamijo, T., Weber, J.D., Zambetti, G., Zindy, F., Roussel, M.F., and Sherr, C.J. (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95, 8292-8297.   DOI
15 Kwong, R.A., Kalish, L.H., Nguyen, T.V., Kench, J.G., Bova, R.J., Cole, I.E., Musgrove, E.A., and Sutherland, R.L. (2005). p14ARF protein expression is a predictor of both relapse and survival in squamous cell carcinoma of the anterior tongue. Clin. Cancer Res. 11, 4107-4116.   DOI
16 Leduc, C., Claverie, P., Eymin, B., Col, E., Khochbin, S., Brambilla, E., and Gazzeri, S. (2006). p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25, 4147-4154.   DOI
17 Lee, M., Sup Han, W., Kyoung Kim, O., Hee Sung, S., Sun Cho, M., Lee, S.N., and Koo, H. (2006). Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol. Res. Pract. 202, 415-424.   DOI
18 Lin, A.W., Barradas, M., Stone, J.C., van Aelst, L., Serrano, M., and Lowe, S.W. (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008-3019.   DOI
19 Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., Berdel, W.E., van der Reijden, B., Quelle, D.E., Rowley, J.D., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat. Med. 8, 743-750.   DOI
20 Lohrum, M.A.E., Ashcroft, M., Kubbutat, M.H.G., and Vousden, K.H. (2000). Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization. Curr. Biol. 10, 539-542.   DOI
21 Kamijo, T., Bodner, S., van de Kamp, E., Randle, D.H., and Sherr, C.J. (1999). Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217-2222.
22 Hewitt, C., Lee Wu, C., Evans, G., Howell, A., Elles, R.G., Jordan, R., Sloan, P., Read, A.P., and Thakker, N. (2002). Germline mutation of ARF in a melanoma kindred. Hum. Mol. Genet. 11, 1273-1279.   DOI
23 Han, S.Y., Ko, A., Kitano, H., Choi, C.H., Lee, M.S., Seo, J., Fukuoka, J., Kim, S.Y., Hewitt, S.M., Chung, J.Y., et al. (2017). Molecular chaperone HSP90 is necessary to prevent cellular senescence via lysosomal degradation of p14ARF. Cancer Res. 77, 343-354.   DOI
24 Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299.   DOI
25 He, S., and Sharpless, N.E. (2017). Senescence in health and disease. Cell 169, 1000-1011.   DOI
26 Hsu, H.S., Wang, Y.C., Tseng, R.C., Chang, J.W., Chen, J.T., Shih, C.M., Chen, C.Y., and Wang, Y.C. (2004). 5' cytosine-phosphoguanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin. Cancer Res. 10, 4734-4741.   DOI
27 Iida, S., Akiyama, Y., Nakajima, T., Ichikawa, W., Nihei, Z., Sugihara, K., and Yuasa, Y. (2000). Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int. J. Cancer 87, 654-658.   DOI
28 Kasahara, T., Bilim, V., Hara, N., Takahashi, K., and Tomita, Y. (2006). Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res. 26, 4299-4305.
29 Inda, M.M., Munoz, J., Coullin, P., Fauvet, D., Danglot, G., Tunon, T., Bernheim, A., and Castresana, J.S. (2006). High promoter hypermethylation frequency of p14/ARF in supratentorial PNET but not in medulloblastoma. Histopathology 48, 579-587.   DOI
30 Inoue, K., Roussel, M.F., and Sherr, C.J. (1999). Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl. Acad. Sci. USA 96, 3993-3998.   DOI
31 Kawamoto, K., Enokida, H., Gotanda, T., Kubo, H., Nishiyama, K., Kawahara, M., and Nakagawa, M. (2006). p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem. Biophys. Res. Commun. 339, 790-796.   DOI
32 Kim, W.Y., and Sharpless, N.E. (2006). The regulation of INK4/ARF in cancer and aging. Cell 127, 265-275.   DOI
33 Kim, H.S., Chung, W.B., Hong, S.H., Kim, J.A., Na, S.Y., Jang, H.J., Sohn, Y.K., and Kim, J.W. (2000). Inactivation of p16INK4a in primary tumors and cell lines of head and neck squamous cell carcinoma. Mol. Cells 10, 557-565.   DOI
34 Klump, B., Hsieh, C.J., Nehls, O., Dette, S., Holzmann, K., Kiesslich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., et al. (2003). Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br. J. Cancer 88, 217-222.   DOI
35 Ko, A., Shin, J.Y., Seo, J., Lee, K.D., Lee, E.W., Lee, M.S., Lee, H.W., Choi, I.J., Jeong, J.S., Chun, K.H., et al. (2012). Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J. Natl. Cancer Inst. 104, 1660-1672.   DOI
36 Ko, A., Han, S.Y., Choi, C.H., Cho, H., Lee, M.S., Kim, S.Y., Song, J.S., Hong, K.M., Lee, H.W., Hewitt, S.M., et al. (2018). Oncogeneinduced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF. Cell Death Differ. [Epub ahead of Print].
37 Konishi, N., Nakamura, M., Kishi, M., Nishimine, M., Ishida, E., and Shimada, K. (2002). Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate carcinomas. Am. J. Pathol. 160, 1207-1214.   DOI
38 Eymin, B., Karayan, L., Seite, P., Brambilla, C., Brambilla, E., Larsen, C.J., and Gazzeri, S. (2001). Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 20, 1033-1041.   DOI
39 Itahana, K., Bhat, K.P., Jin, A., Itahana, Y., Hawke, D., Kobayashi, R., and Zhang, Y. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151-1164.   DOI
40 Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., and Hancock, D.C. (1992). Induction of apoptosis in fibroblasts by C-Myc protein. Cell 69, 119-128.   DOI
41 Fatyol, K., and Szalay, A.A. (2001). The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha ) and inhibits HIF-1-mediated transcription. J. Biol. Chem. 276, 28421-28429.   DOI
42 Ferbeyre, G., de Stanchina, E., Lin, A.W., Querido, E., McCurrach, M.E., Hannon, G.J., and Lowe, S.W. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22, 3497-3508.   DOI
43 Adhikary, S., and Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635-645.   DOI
44 Gazzeri, S., Della Valle, V., Chaussade, L., Brambilla, C., Larsen, C.J., and Brambilla, E. (1998). The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res. 58, 3926-3931.
45 Gil, J., and Peters, G. (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667-677.   DOI
46 Gil, J., Bernard, D., Martinez, D., and Beach, D. (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6, 67-72.   DOI
47 Aslanian, A., Iaquinta, P.J., Verona, R., and Lees, J.A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413-1422.   DOI
48 Berggren, P., Kumar, R., Sakano, S., Hemminki, L., Wada, T., Steineck, G., Adolfsson, J., Larsson, P., Norming, U., Wijkstrom, H., et al. (2003). Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin. Cancer Res. 9, 235-242.
49 Nikolic, N., Anicic, B., Carkic, J., Simonovic, J., Toljic, B., Tanic, N., Tepavcevic, Z., Vukadinovic, M., Konstantinovic, V.S., and Milasin, J. (2015). High frequency of p16 and p14 promoter hypermethylation and marked telomere instability in salivary gland tumors. Arch. Oral. Biol. 60, 1662-1666.   DOI
50 Randerson-Moor, J.A., Harland, M., Williams, S., Cuthbert-Heavens, D., Sheridan, E., Aveyard, J., Sibley, K., Whitaker, L., Knowles, M., Bishop, J.N., et al. (2001). A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum. Mol. Genet. 10, 55-62.   DOI
51 Rizos, H., Darmanian, A.P., Mann, G.J., and Kefford, R.F. (2000). Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene 19, 2978-2985.   DOI
52 Rizos, H., Darmanian, A.P., Holland, E.A., Mann, G.J., and Kefford, R.F. (2001a). Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J. Biol. Chem. 276, 41424-41434.   DOI
53 Silva, J., Dominguez, G., Silva, J.M., Garcia, J.M., Gallego, I., Corbacho, C., Provencio, M., Espana, P., and Bonilla, F. (2001). Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene 20, 4586-4590.   DOI
54 Rizos, H., Puig, S., Badenas, C., Malvehy, J., Darmanian, A.P., Jimenez, L., Mila, M., and Kefford, R.F. (2001b). A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20, 5543-5547.   DOI
55 Sailasree, R., Abhilash, A., Sathyan, K.M., Nalinakumari, K.R., Thomas, S., and Kannan, S. (2008). Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol. Biomarkers Prev. 17, 414-420.   DOI
56 Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.   DOI
57 Sherr, C.J. (2006). Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6, 663-673.   DOI
58 Shintani, S., Nakahara, Y., Mihara, M., Ueyama, Y., and Matsumura, T. (2001). Inactivation of the p14(ARF), p15(INK4B) and p16(INK4A) genes is a frequent event in human oral squamous cell carcinomas. Oral Oncol. 37, 498-504.   DOI
59 Silva, J., Silva, J.M., Dominguez, G., Garcia, J.M., Cantos, B., Rodriguez, R., Larrondo, F.J., Provencio, M., Espana, P., and Bonilla, F. (2003). Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J. Pathol. 199, 289-297.   DOI
60 Sreeramaneni, R., Chaudhry, A., McMahon, M., Sherr, C.J., and Inoue, K. (2005). Ras-Raf-Arf signaling critically depends on the Dmp1 transcription factor. Mol. Cell. Biol. 25, 220-232.   DOI
61 Tannapfel, A., Busse, C., Geissler, F., Witzigmann, H., Hauss, J., and Wittekind, C. (2002a). INK4a-ARF alterations in liver cell adenoma. Gut 51, 253-258.   DOI
62 Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T.K., Hampton, G.M., and Wahl, G.M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031-1044.   DOI
63 Della Valle, V., Duro, D., Bernard, O., and Larsen, C.J. (1997). The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative beta transcript of the p16INK4a/MTS1 gene. Oncogene 15, 2475-2481.   DOI
64 Dominguez, G., Carballido, J., Silva, J., Silva, J.M., Garcia, J.M., Menendez, J., Provencio, M., Espana, P., and Bonilla, F. (2002). p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin. Cancer Res. 8, 980-985.
65 Dominguez, G., Silva, J., Garcia, J.M., Silva, J.M., Rodriguez, R., Munoz, C., Chacon, I., Sanchez, R., Carballido, J., Colas, A., et al. (2003). Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutation Res. 530, 9-17.   DOI
66 Tannapfel, A., Sommerer, F., Benicke, M., Weinans, L., Katalinic, A., Geissler, F., Uhlmann, D., Hauss, J., and Wittekind, C. (2002b). Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J. Pathol. 197, 624-631.   DOI
67 Tschan, M.P., Federzoni, E.A., Haimovici, A., Britschgi, C., Moser, B.A., Jin, J., Reddy, V.A., Sheeter, D.A., Fischer, K.M., Sun, P., et al. (2015). Human DMTF1beta antagonizes DMTF1alpha regulation of the p14(ARF) tumor suppressor and promotes cellular proliferation. Biochim. Biophys. Acta 1849, 1198-1208.   DOI
68 Vonlanthen, S., Heighway, J., Tschan, M.P., Borner, M.M., Altermatt, H.J., Kappeler, A., Tobler, A., Fey, M.F., Thatcher, N., Yarbrough, W.G., et al. (1998). Expression of p16INK4a/$p16{\alpha}$ and p19ARF/$p16{\beta}$ is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 17, 2779-2785.   DOI
69 Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J., and Bar-Sagi, D. (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1, 20-26.   DOI
70 Wang, X., Zha, M., Zhao, X., Jiang, P., Du, W., Tam, A.Y., Mei, Y., and Wu, M. (2013). Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat. Commun. 4, 1551.   DOI
71 Weber, J.D., Jeffers, J.R., Rehg, J.E., Randle, D.H., Lozano, G., Roussel, M.F., Sherr, C.J., and Zambetti, G.P. (2000a). p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 14, 2358-2365.   DOI
72 Cairns, P., Tokino, K., Eby, Y., and Sidransky, D. (1994). Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res. 54, 1422-1424.
73 Eischen, C.M., Weber, J.D., Roussel, M.F., Sherr, C.J., and Cleveland, J.L. (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658-2669.   DOI
74 Esteller, M., Tortola, S., Toyota, M., Capella, G., Peinado, M.A., Baylin, S.B., and Herman, J.G. (2000). Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60, 129-133.
75 Cai, J.B., Shi, G.M., Dong, Z.R., Ke, A.W., Ma, H.H., Gao, Q., Shen, Z.Z., Huang, X.Y., Chen, H., Yu, D.D., et al. (2015). Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 61, 1603-1614.   DOI
76 Cakouros, D., Isenmann, S., Cooper, L., Zannettino, A., Anderson, P., Glackin, C., and Gronthos, S. (2012). Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol. Cell. Biol. 32, 1433-1441.   DOI
77 Chaar, I., Amara, S., Elamine, O.E., Khiari, M., Ounissi, D., Khalfallah, T., Ben Hmida, A., Mzabi, S., and Bouraoui, S. (2014). Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol. 35, 1439-1449.   DOI
78 Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730.   DOI
79 Zheng, Y., Zhao, Y.D., Gibbons, M., Abramova, T., Chu, P.Y., Ash, J.D., Cunningham, J.M., and Skapek, S.X. (2010). Tgfbeta signaling directly induces Arf promoter remodeling by a mechanism involving Smads 2/3 and p38 MAPK. J. Biol. Chem. 285, 35654-35664.   DOI
80 Yoon, J.H., Choi, W.I., Jeon, B.N., Koh, D.I., Kim, M.K., Kim, M.H., Kim, J., Hur, S.S., Kim, K.S., and Hur, M.W. (2014). Human Kruppelrelated 3 (HKR3) is a novel transcription activator of alternate reading frame (ARF) gene. J. Biol. Chem. 289, 4018-4031.   DOI
81 Zhu, J.Y., Woods, D., McMahon, M., and Bishop, J.M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997-3007.   DOI
82 Zindy, F., Eischen, C.M., Randle, D.H., Kamijo, T., Cleveland, J.L., Sherr, C.J., and Roussel, M.F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424-2433.   DOI
83 Bouchard, C., Lee, S., Paulus-Hock, V., Loddenkemper, C., Eilers, M., and Schmitt, C.A. (2007). FoxO transcription factors suppress Mycdriven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775-2787.   DOI
84 Zochbauer-Muller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F., and Minna, J.D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249-255.
85 Weber, J.D., Kuo, M.L., Bothner, B., DiGiammarino, E.L., Kriwacki, R.W., Roussel, M.F., and Sherr, C.J. (2000b). Cooperative signals governing ARF-Mdm2 interaction and nucleolar localization of the complex. Mol. Cell. Biol. 20, 2517-2528.   DOI
86 Chen, D., Shan, J., Zhu, W.G., Qin, J., and Gu, W. (2010). Transcription-independent ARF regulation in oncogenic stressmediated p53 responses. Nature 464, 624-627.   DOI
87 Collado, M., and Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51-57.   DOI
88 Collado, M., Blasco, M.A., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223-233.   DOI
89 Bracken, A.P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Monch, K., Minucci, S., Porse, B.T., Marine, J.C., et al. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525-530.   DOI
90 Brady, S.N., Yu, Y., Maggi, L.B., Jr., and Weber, J.D. (2004). ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol. Cell. Biol. 24, 9327-9338.   DOI
91 Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831-834.   DOI
92 Bulavin, D.V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L.A., Anderson, C.W., Appella, E., and Fornace, A.J., Jr. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36, 343-350.   DOI
93 Cabral, V.D., Cerski, M.R., Sa Brito, I.T., and Kliemann, L.M. (2016). p14 expression differences in ovarian benign, borderline and malignant epithelial tumors. J. Ovarian Res. 9, 69.   DOI