• 제목/요약/키워드: transcriptional regulator

검색결과 206건 처리시간 0.029초

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca;Vogel, Christine
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.357-364
    • /
    • 2014
  • Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

Tumor antigen PRAME is a potential therapeutic target of p53 activation in melanoma cells

  • Yong-Kyu Lee;Hyeon Ho Heo;Nackhyoung Kim;Ui-Hyun Park;Hyesook Youn;Eun-Yi Moon;Eun-Joo Kim;Soo-Jong Um
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.299-304
    • /
    • 2024
  • Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activation-mediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells.

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Corynebacterium ammoniagenes에서 purF 유전자의 조절 및 이에 특이적인 조절 단백질의 분리 (Regulation of Corynebacterium ammoniagenes purF and Isolation of purF-Specific Regulatory Proteins)

  • 이석명;김연희;이흥식
    • 미생물학회지
    • /
    • 제45권3호
    • /
    • pp.233-238
    • /
    • 2009
  • Corynebacterium ammoniagenes의 purF 유전자의 발현을 purF의 프로모터 추정 부위에 cat 유전자를 융합시킨 transcriptional fusion 플라스미드를 제작하여 분석하였다. 유전자 purF는 adenine과 guanine에 의해 20~30%의 전사 저해효과를 나타내지만, hypoxanthine에는 저해를 받지 않는 것으로 나타났다. 또한 purF의 발현은 대수기중반에 최대에 달한 후 정체기 후반부까지 일정한 것으로 나타났다. 동시에, C. glutamicum에서 사용되는 강력한 프로모터인 $P_{180}$이 Escherichia coli의 $P_{tac}$보다 C. ammoniagenes에서 모든 성장 단계에서 40~50%의 향상된 프로모터 활성을 나타내었고 대수기 후반부에 최고 활성에 달해, C. ammoniagenes의 연구에도 활용 가능함을 확인하였다. DNA-affinity purification에 의해 C. ammoniagenes의 purF 프로모터에 결합하는 단백질로서 C. glutamicum의 Crp-family transcriptional regulator (NCgl0120)와 상동성이 높은 단백질을 검출하였다. 이 단백질은 크기가 40.1 kDa으로서 PAGE에서 관찰된 단백질 크기와 일치하였다. 이에 상응하는 C. ammoniagenes의 단백질은 400개의 아미노산으로 구성되어 있고, 42 kDa의 단백질을 만들며, pI는 4.9일 것으로 추정되었다. 이는 기존에 알려져 있는 E. coli 및 Bacillus subtilis의 PurR과 각각 14.1%, 15.8%의 아미노산 상동성을 보여, PurR과는 다른 종류의 단백질일 것으로 여겨진다.

sRNA EsrE Is Transcriptionally Regulated by the Ferric Uptake Regulator Fur in Escherichia coli

  • Hou, Bingbing;Yang, Xichen;Xia, Hui;Wu, Haizhen;Ye, Jiang;Zhang, Huizhan
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.127-135
    • /
    • 2020
  • Small RNAs (sRNAs) are widespread and play major roles in regulation circuits in bacteria. Previously, we have demonstrated that transcription of esrE is under the control of its own promoter. However, the regulatory elements involved in EsrE sRNA expression are still unknown. In this study, we found that different cis-regulatory elements exist in the promoter region of esrE. We then screened and analyzed seven potential corresponding trans-regulatory elements by using pull-down assays based on DNA affinity chromatography. Among these candidate regulators, we investigated the relationship between the ferric uptake regulator (Fur) and the EsrE sRNA. Electrophoresis mobility shift assays (EMSAs) and β-galactosidase activity assays demonstrated that Fur can bind to the promoter region of esrE, and positively regulate EsrE sRNA expression in the presence of Fe2+.

Rhodobacter sphaeroides의 nif 유전자의 발현에 대한 NifA와 PrrA의 작용 (The Role of NifA and PrrA on the Expression of nif Gene in Rhodobacter sphaeroides)

  • 손명화;김민주;이상준
    • 한국환경과학회지
    • /
    • 제21권9호
    • /
    • pp.1139-1147
    • /
    • 2012
  • To find out the growth conditions for the maximum activity of nitrogenase which catalyzes nitrogen fixation in Rhodobacter sphaeroides, the promoter activities of nifA and nifH were analyzed and the results indicated that expression of both nifA and nifH was increased in response to deprivation of both O2 concentration and nitrogen source. The nifA mutant was constructed by deleting the gene to investigate the effect of NifA, the transcriptional regulator, on the nifH and nifA expression in R. sphaeroides. Analysis of expression of nif genes using the nifA::lacZ and nifH::lacZ fusions in the nifA mutant revealed that NifA acts as a positive activator for nifH and an autoregulator in its own expression. The promoter activities of nifA and nifH in the prrA mutant grown under anaerobic and ${NH_4}^+$-free conditions were derepressed, comparing with those of the wild-type grown under the same conditions, indicating that the prrA product acts as a positive regulator in expression of nifA and nifH.

Mitochondrial defect-responsive gene signature in liver-cancer progression

  • Lee, Young-Kyoung;Woo, Hyun Goo;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.597-598
    • /
    • 2015
  • Mitochondrial respiratory defect is a key bioenergetics feature of hepatocellular carcinoma (HCC) cells. However, their involvement and roles in HCC development and progression remain unclear. Recently, we identified 10 common mitochondrial defect (CMD) signature genes that may be induced by retrograde signaling-mediated transcriptional reprogramming in response to HCC mitochondrial defects. HCC patients with enriched expression of these genes had poor prognostic outcomes, such as shorter periods of overall survival and recurrence-free survival. Nuclear protein 1 (NUPR1), a key transcription regulator, was up-regulated by Ca++-mediated retrograde signaling. NUPR1-centric network analysis and a biochemical promoter-binding assay demonstrated that granulin (GRN) is a key downstream effector of NUPR1 for the regulation of HCC cell invasiveness; association analysis of the NUPR1-GRN pathway supported this conclusion. Mitochondrial respiratory defects and retrograde signaling thus play pivotal roles in HCC progression, highlighting the potential of the NUPR1-GRN axis as a novel diagnostic marker and therapeutic target for HCC.

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock

  • Lee, Jiwon;Park, Eonyoung;Kim, Ga Hye;Kwon, Ilmin;Kim, Kyungjin
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.6.1-6.10
    • /
    • 2018
  • Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.