DOI QR코드

DOI QR Code

The Role of NifA and PrrA on the Expression of nif Gene in Rhodobacter sphaeroides

Rhodobacter sphaeroides의 nif 유전자의 발현에 대한 NifA와 PrrA의 작용

  • Son, Myung-Hwa (Department of Microbiology, Pusan National University) ;
  • Kim, Min-Ju (Department of Microbiology, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • Received : 2012.06.15
  • Accepted : 2012.08.27
  • Published : 2012.09.30

Abstract

To find out the growth conditions for the maximum activity of nitrogenase which catalyzes nitrogen fixation in Rhodobacter sphaeroides, the promoter activities of nifA and nifH were analyzed and the results indicated that expression of both nifA and nifH was increased in response to deprivation of both O2 concentration and nitrogen source. The nifA mutant was constructed by deleting the gene to investigate the effect of NifA, the transcriptional regulator, on the nifH and nifA expression in R. sphaeroides. Analysis of expression of nif genes using the nifA::lacZ and nifH::lacZ fusions in the nifA mutant revealed that NifA acts as a positive activator for nifH and an autoregulator in its own expression. The promoter activities of nifA and nifH in the prrA mutant grown under anaerobic and ${NH_4}^+$-free conditions were derepressed, comparing with those of the wild-type grown under the same conditions, indicating that the prrA product acts as a positive regulator in expression of nifA and nifH.

Keywords

References

  1. Bauer, E., Kaspar, T., Fischer, H. M., Hennecke, H., 1998, Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR, J. Bacteriol., 180, 3853-3863.
  2. Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y., 1957, Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell. Physiol., 49, 25-68. https://doi.org/10.1002/jcp.1030490104
  3. Davis, J., Donohue, T. J., Kaplan, S., 1988, Construction, characterization, and complementation of a puf mutant of Rhodobacter sphaeroides, J. Bacteriol., 170, 320-329. https://doi.org/10.1128/jb.170.1.320-329.1988
  4. Dixon, R., 1998, The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria, Arch. Microbiol., 169, 371-380. https://doi.org/10.1007/s002030050585
  5. Elsen, S., Dischert, W., Colbeau, A., Bauer, C. E., 2000, Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system, J. Bacteriol., 182, 2831-2837. https://doi.org/10.1128/JB.182.10.2831-2837.2000
  6. Eraso, J. M., Roh, J. H., Zeng, X., Callister, S. J., Lipto n, M. S., Kaplan, S., 2008, Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis, J. Bacteriol., 190, 4831-4848. https://doi.org/10.1128/JB.00301-08
  7. Eraso, J. M., Kaplan, S., 1996, Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1., J. Bacteriol., 178, 7037-7046. https://doi.org/10.1128/jb.178.24.7037-7046.1996
  8. Eraso, J. M., Kaplan, S., 1995, Oxygen-Insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase, J. Bacteriol., 177, 2695-2706. https://doi.org/10.1128/jb.177.10.2695-2706.1995
  9. Eraso, J. M., Kaplan, S., 1994, prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides, J. Bacteriol., 176, 32-43. https://doi.org/10.1128/jb.176.1.32-43.1994
  10. Fischer, H. M., 1994, Genetic regulation of nitrogen fixation in rhizobia, Microbiol. Rev., 58, 352-386.
  11. Fischer, H. M., Hennecke, H., 1987, Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status, Mol. Gen Genet., 209, 621-626. https://doi.org/10.1007/BF00331174
  12. Fischer, H. M., Bruderer, T., Hennecke, H., 1988, Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding, Nucleic Acid Res., 16, 2207-2224. https://doi.org/10.1093/nar/16.5.2207
  13. Fostner-Hartnett, D., Kranz, R. G., 1992, Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus:activation requires ntrC but not rpoN, Mol. Microbiol, 6, 1049-1060. https://doi.org/10.1111/j.1365-2958.1992.tb02170.x
  14. Halbleib, C. M., Ludden, P. W., 2000, Regulation of biological nitrogen fixation, J. Nutr., 130, 1081-1084. https://doi.org/10.1093/jn/130.5.1081
  15. Hubner, P., Willison, J. C., Vignais, P. M., Bickle, T. A., 1991, Expression of Regulatory nif Genes in Rhodobacter capsulatus, J. Bacteriol., 173, 2993-2999. https://doi.org/10.1128/jb.173.9.2993-2999.1991
  16. Jessee, J., 1986, New subcloning efficiency competent cells: >1x$10^{6}$ transformants/$\mu g$, Focus, 8, 9.
  17. Joshi, H. M., Tabita, F. R., 1996, A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation, Proc. Natl. Acad. Sci. U. S. A., 93, 14515-14520. https://doi.org/10.1073/pnas.93.25.14515
  18. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop II , R. M., Peterson, K. M., 1995, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene, 166, 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  19. Kranz, R. G., Foster-Hartnett, D., 1990, Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors, Mol. Microbiol., 4, 1793-1800. https://doi.org/10.1111/j.1365-2958.1990.tb02027.x
  20. Kranz, R. G., Pace, V. M., Caldicott, I. M., 1990, Inactivation, sequences, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capusulatus, J. Bacteriol., 172, 53-62. https://doi.org/10.1128/jb.172.1.53-62.1990
  21. Lee, J. K., Kaplan, S., 1995, Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence, J. Biol. Chem., 270, 20453-20458. https://doi.org/10.1074/jbc.270.35.20453
  22. Lenz, O., Schwartz, E., Dernedde, Eitinger, J., M., Friedrich, B., 1994, The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation, J. Bacteriol., 176, 4385-4393. https://doi.org/10.1128/jb.176.14.4385-4393.1994
  23. Masepohl, B., Klipp, W., 1996, Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus, Arch. Microbiol., 165, 80-90. https://doi.org/10.1007/s002030050301
  24. Masuda, S., Matsumoto, Y., Nagashima, K. V., Shimada, K., Inoue, K., Bauer, C. E., Matsuura, K., 1999, Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus, J. Bacteriol., 181, 4205-4215.
  25. Merric, M. J., Edwards, R. A., 1995, Nitrogen control in bacteria, Microbiol. Rev., 59, 604-622.
  26. Merrick, M. J., 1983, Nitrogen control of the nif regulon in Klebsiella pneumoniae: involvement of the ntrA gene and analogies between ntrC and nifA, EMBO J., 2, 39-44.
  27. Michiels, J., D'hooghe, I., Verreth, C., Pelemans, H., Vanderleyden, J., 1994, Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression, Arch. Microbiol., 161, 404-408. https://doi.org/10.1007/BF00288950
  28. Miller, J. H., 1972, Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y..
  29. Oelze, J., Klein, G., 1996, Control of nitrogen fixation by oxygen in purple nonsulfur bacteria, Arch. Microbiol., 165, 219-225. https://doi.org/10.1007/s002030050319
  30. Paschen, A., Drepper, T., Masepohl, B., Klipp, W., 2001, Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium, FEMS. Microbiol. Lett., 200, 207-213. https://doi.org/10.1111/j.1574-6968.2001.tb10717.x
  31. Qian, Y., Tabita, F. R., 1996, A global signal transduction system regulates aerobic and anaerobic $CO_{2}$ fixation in Rhodobacter sphaeroides, J. Bacteriol., 178, 12-18. https://doi.org/10.1128/jb.178.1.12-18.1996
  32. Sambrook, J., Fritsch, E. F., Maniatis, T., 1989, Molecular cloning: a laboratory manual, 2nd cd. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y..
  33. Schmitz, R. A., Klopprogge, K., Grabbe, R., 2002 Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA., J. Mol .Microbiol. Biotechnol., 4, 235-242.
  34. Sganga, M. W., Bauer, C. E., 1992, Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus, Cell, 68, 945-954. https://doi.org/10.1016/0092-8674(92)90037-D
  35. Simon, R., Priefer, U., Puhler, A., 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria, Bio/Technology, 1, 784-791. https://doi.org/10.1038/nbt1183-784
  36. Son, M. H., Lee, S. J., 2012, Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1, J. Life Sci., 22, 1009-1017. https://doi.org/10.5352/JLS.2012.22.8.1009
  37. Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids. Res., 22, 4673- 4680. https://doi.org/10.1093/nar/22.22.4673
  38. Tiwari, R. P., Reeve, W. G., Dilworth, M. J., Glenn, A. R., 1996, Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensorregulator system, Microbiology, 142, 1693-1704. https://doi.org/10.1099/13500872-142-7-1693
  39. van Niel, C. B., 1944, The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria, Bacteriol. Rev., 8, 1-118.
  40. Yanisch-Perron, C., Vieira, J., Messing, J., 1985, Improved M13 phage cloning vectors and host strains: nucleotide sequence for the M13 mp18 and pUC19 vectors, Gene, 33, 103-119. https://doi.org/10.1016/0378-1119(85)90120-9