Browse > Article
http://dx.doi.org/10.4014/jmb.1609.09021

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA  

Eom, Ki Seong (Department of Neurosurgery, School of Medicine and Hospital, Wonkwang University)
Cheong, Jin Sung (Department of Neurology, School of Medicine and Hospital, Wonkwang University)
Lee, Seung Jae (Department of Chemistry and Research Institute of Physic and Chemistry, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.12, 2016 , pp. 2019-2029 More about this Journal
Abstract
Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.
Keywords
Zinc finger proteins; metalloproteins; classical zinc finger; transcriptional regulator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Del Rio S, Menezes SR, Setzer DR. 1993. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA. J. Mol. Biol. 233: 567-579.   DOI
2 Lee SJ, Michel SL. 2014. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc. Chem. Res. 47: 2643-2650.   DOI
3 Lee SJ, Michel SLJ. 2010. Cysteine oxidation enhanced by iron in tristetraprolin, a zinc finger peptide. Inorg. Chem. 49: 1211-1219.   DOI
4 Parkin G. 2004. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104: 699-767.   DOI
5 Pavletich NP, Pabo CO. 1991. Zinc finger DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 ${\AA}$. Science 252: 809-817.   DOI
6 Pedone PV, Omichinski JG, Nony P, Trainor C, Gronenborn AM, Clore GM, Felsenfeld G. 1997. The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequencespecific DNA binding domains. EMBO J. 16: 2874-2882.   DOI
7 Wuttke DS, Foster MP, Case DA, Gottesfeld JM, Wright PE. 1997. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity. J. Mol. Biol. 273: 183-206.   DOI
8 Lee YM, Lim C. 2008. Physical basis of structural and catalytic Zn-binding sites in proteins. J. Mol. Biol. 379: 545-553.   DOI
9 Li WF, Zhang J, Wang J, Wang W. 2008. Metal-coupled folding of Cys2His2 zinc-finger. J. Am. Chem. Soc. 130: 892-900.   DOI
10 Penner-Hahn J. 2007. Zinc-promited alkyl transfer: a new role for zinc. Curr. Opin. Chem. Biol. 11: 166-171.   DOI
11 Petersohn D, Thiel G. 1996. Role of zinc-finger proteins Sp1 and Zif268/egr-1 in transcriptional regulation of the human synaptobrevin II gene. Eur. J. Biochem. 239: 827-834.   DOI
12 Zandarashvili L, White MA, Esadze A, Iwahara J. 2015. Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett. 589: 1748-1753.   DOI
13 Malgieri G, Russo L, Esposito S, Baglivo I, Zaccaro L, Peclone EM, et al. 2007. The prokaryotic $Cys_2$$His_2$ zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain. Proc. Natl. Acad. Sci. USA 104: 17341-17346.   DOI
14 Quintal SM, dePaula QA, Farrell NP. 2011. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 3: 121-139.
15 Roehm PC, B erg JM. 1997. Sequential metal b inding b y the RING finger domain of BRCA1. Biochemistry. 36: 10240-10245.   DOI
16 Mandell JG, Barbas CF. 2006. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34: W516-W523.   DOI
17 Maret W, Li Y. 2009. Coordination dynamics of zinc in proteins. Chem. Rev. 109: 4682-4707.   DOI
18 Payne JC, Rous BW, Tenderholt AL, Godwin HA. 2003. Spectroscopic determination of the binding affinity of zinc to the DNA-binding domains of nuclear hormone receptors. Biochemistry 42: 14214-14224.   DOI
19 Ryan RF, Darby MK. 1998. The role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA. Nucleic Acids Res. 26: 703-709.   DOI
20 Shastry BS. 1996. Transcription factor IIIA (TFIIIA) in the second decade. J. Cell Sci. 109: 535-539.
21 Klug A. 2010. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 43: 1-21.   DOI
22 Knapska E, Kaczmarek L. 2004. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/ Krox-24/TIS8/ZENK? Prog. Neurobiol. 74: 183-211.   DOI
23 Maret W, Vallee BL. 1993. Cobalt as probe and label of proteins. Methods Enzymol. 226: 52-71.
24 Matthews JM, Sunde M. 2002. Zinc fingers - folds for many occasions. IUBMB Life 54: 351-355.   DOI
25 Pedone PV, Ghirlando R, Clore GM, Gronenborn AM, Felsenfeld G, Omichinski JG. 1996. The single $Cys_2$-$His_2$ zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc. Natl. Acad. Sci. USA 93: 2822-2826.   DOI
26 Summers MF. 1988. 113Cd NMR spectroscopy of coordination compounds and proteins. Coord. Chem. Rev. 86: 43-134.   DOI
27 Kothinti R, Blodgett A, Tabatabai NM, Petering DH. 2010. Zinc finger transcription factor $Zn_3$-SP1 reactions with $Cd^2+$ Chem. Res. Toxicol. 23: 405-412.   DOI
28 Maynard AT, Covell DG. 2001. Reactivity of zinc finger cores: analysis of protein packing and electrostatic screening. J. Am. Chem. Soc. 123: 1047-1058.   DOI
29 McCall M, Brown T, Hunter WN, Kennard O. 1986. The crystal structure of D(GGATGGGAG) forms an essential part of the binding site for transcription factor IIIa. Nature 322: 661-664.   DOI
30 Takeuchi T, Bottcher A, Quezada CM, Meade TJ, Gray HB. 1999. Inhibition of thermolysin and human ${\alpha}$-thrombin by cobalt(III) Schiff base complexes. Bioorg. Med. Chem. 7: 815-819.   DOI
31 Krepkiy D, Forsterling FH, Petering DH. 2004. Interaction of $Cd^2+$ with Zn finger 3 of transcription factor IIIA: structures and binding to cognate DNA. Chem. Res. Toxicol. 17: 863-870.   DOI
32 Krizek BA, Merkle DL, Berg JM. 1993. Ligand variation and metal ion binding specificity in zinc finger peptides. Inorg. Chem. 32: 937-940.   DOI
33 Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11: 636-646.   DOI
34 Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. 2014. The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog. Mol. Biol. Transl. Sci. 122: 89-129.
35 Wolfe SA, Nekludova L, Pabo CO. 2000. DNA recognition by $Cys_2$$His_2$ zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29: 183-212.   DOI
36 Beckmann AM, Davidson MS, Goodenough S, Wilce PA. 1997. Differential expression of Egr-1-like DNA-binding activities in the naive rat brain and after excitatory stimulation. J. Neurochem. 69: 2227-2237.
37 Beckmann AM, Wilce PA. 1997. Egr transcription factors in the nervous system. Neurochem. Int. 31: 477-510.   DOI
38 Bai CY, Tolias PP. 1998. Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters. Nucleic Acids Res. 26: 1597-1604.   DOI
39 Beerli RR, Barbas CF. 2002. Engineering polydactyl zincfinger transcription factors. Nat. Biotechnol. 20: 135-141.   DOI
40 Berg JM. 1989. Zinc fingers: the role of zinc(II) in transcription factor IIIA and related proteins. Met. Ions Biol. Syst. 25: 235-254.
41 Berg JM. 1990. Zinc finger domains: hypotheses and current knowledge. Annu. Rev. Biophys. Biophys. Chem. 19: 405-421.   DOI
42 Foster MP, Wuttke DS, Radhakrishnan I, Case DA, Gottesfeld JM, Wright PE. 1997. Domain packing and dynamics in the DNA complex of the N-terminal zinc fingers of TFIIIA. Nat. Struct. Biol. 4: 605-608.   DOI
43 Archdeacon J, Bouhouche N, O'Connell F, Kado CI. 2000. A single amino acid substitution beyond the C2H2-zinc finger in Ros derepresses virulence and T-DNA genes in Agrobacterium tumefaciens. FEMS Microbiol. Lett. 187: 175-178.   DOI
44 Gaj T, Gersbach CA, Barbas CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31: 397-405.   DOI
45 Green LM, Berg JM. 1989. A retroviral Cys-$X_aa2$-Cys-$X_aa4$-His- $X_aa4$-Cys peptide binds metal ions: spectroscopic studies and a proposed 3-dimensional structure. Proc. Natl. Acad. Sci. USA 86: 4047-4051.   DOI
46 Berg JM, Merkle DL. 1989. On the metal ion specificity of zinc finger proteins. J. Am. Chem. Soc. 111: 3759-3761.   DOI
47 Berg JM. 1986. Potential metal-binding domains in nucleic acid binding proteins. Science 232: 485-487.   DOI
48 Berg JM. 1988. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc. Natl. Acad. Sci. USA 85: 99-102.   DOI
49 Berg JM. 1990. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem. 265: 6513-6516.
50 Berg JM, Godwin HA. 1997. Lessons from zinc-binding peptides. Annu. Rev. Biophys. Biomol. Struct. 26: 357-371.   DOI
51 Dyson HJ, Wright PE. 2002. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12: 54-60.   DOI
52 Dyson HJ, Wright PE. 2004. Unfolded proteins and protein folding studied by NMR. Chem. Rev. 104: 3607-3622.   DOI
53 Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO. 1996. Zif268 protein-DNA complex refined at 1.6 angstrom: a model system for understanding zinc finger-DNA interactions. Structure 4: 1171-1180.   DOI
54 Guerra AJ, Giedroc DP. 2012. Metal site occupancy and allosteric switching in bacterial metal sensor proteins. Arch. Biochem. Biophys. 519: 210-222.   DOI
55 Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FYH, Wu CW. 1983. Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J. Biol. Chem. 258: 4120-4125.
56 He C, Hus JC, Sun LJ, Zhou P, Norman DPG, Dotsch V, et al. 2005. A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. Mol. Cell 20: 117-129.   DOI
57 Jantz D, Amann BT, Gatto GJ, Berg JM. 2004. The design of functional DNA-binding proteins based on zinc finger domains. Chem. Rev. 104: 789-799.   DOI
58 Berg JM, Shi YG. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271: 1081- 1085.   DOI
59 Bouhouche N, Syvanen M, Kado CI. 2000. A mitochondrial origin for eukaryotic C2H2 zinc finger regulators? Trends Microbiol. 8: 449-450.   DOI
60 Kroncke KD, Klotz LO. 2009. Zinc fingers as biologic redox switches? Antioxid. Redox Signal. 11: 1015-1027.   DOI
61 Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA. 2004. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity. Biochemistry 43: 13910-13925.   DOI
62 Michalek JL, Besold AN, Michel SLJ. 2011. Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function. Dalton Trans. 40: 12619-12632.   DOI
63 Bozon B, Davis S, Laroche S. 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695-701.   DOI
64 Lai ZH, Freedman DA, Levine AJ, McLendon GL. 1998. Metal and RNA binding properties of the hdm2 RING finger domain. Biochemistry 37: 17005-17015.   DOI
65 Layat E, Probst AV, Tourmente S. 2013. Structure, function and regulation of transcription factor IIIA: from Xenopus to Arabidopsis. Biochim. Biophys. Acta 1829: 274-282.   DOI
66 Chen PR, He C. 2008. Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol. 12: 214-221.   DOI
67 Chiou SJ, Riordan CG, Rheingold AL. 2003. Synthetic modeling of zinc thiolates: quantitative assessment of hydrogen bonding in modulating sulfur alkylation rates. Proc. Natl. Acad. Sci. USA 100: 3695-3700.   DOI
68 Michalek JL, Lee SJ, Michel SLJ. 2012. Cadmium coordination to the zinc binding domains of the non-classical zinc finger protein tristetraprolin affects RNA binding selectivity. J. Inorg. Biochem. 112: 32-38.   DOI
69 Miller J, Mclachlan AD, Klug A. 1985. Repetitive zinc binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4: 1609-1614.
70 Clemens KR, Zhang PH, Liao XB, Mcbryant SJ, Wright PE, Gottesfeld JM. 1994. Relative contributions of the zinc fingers of transcription factor IIIA to the energetics of DNA binding. J. Mol. Biol. 244: 23-35.   DOI
71 Cox EH, McLendon GL. 2000. Zinc-dependent protein folding. Curr. Opin. Chem. Biol. 4: 162-165.   DOI
72 Nanami M, Ookawara T, Otaki Y, Ito K, Moriguchi R, Miyagawa K, et al. 2005. Tumor necrosis factor-${\alpha}$-induced iron sequestration and oxidative stress in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25: 2495-2501.   DOI
73 Nolte RT, Conlin RM, Harrison SC, Brown RS. 1998. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95: 2938-2943.   DOI
74 Davis D, Stokoe D. 2010. Zinc finger nucleases as tools to understand and treat human diseases. BMC Medicine. 8: 42.   DOI
75 Davis S, Bozon B, Laroche S. 2003. How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 142: 17-30.   DOI
76 Klug A. 2010. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79: 213-231.   DOI
77 Omichinski JG, Pedone PV, Felsenfeld G, Gronenborn AM, Clore GM. 1997. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat. Struct. Biol. 4: 122-132.   DOI
78 Pabo CO, Sauer RT. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 1053-1095.   DOI