Browse > Article
http://dx.doi.org/10.4014/jmb.1907.07026

sRNA EsrE Is Transcriptionally Regulated by the Ferric Uptake Regulator Fur in Escherichia coli  

Hou, Bingbing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Yang, Xichen (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Xia, Hui (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Wu, Haizhen (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Ye, Jiang (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Zhang, Huizhan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.1, 2020 , pp. 127-135 More about this Journal
Abstract
Small RNAs (sRNAs) are widespread and play major roles in regulation circuits in bacteria. Previously, we have demonstrated that transcription of esrE is under the control of its own promoter. However, the regulatory elements involved in EsrE sRNA expression are still unknown. In this study, we found that different cis-regulatory elements exist in the promoter region of esrE. We then screened and analyzed seven potential corresponding trans-regulatory elements by using pull-down assays based on DNA affinity chromatography. Among these candidate regulators, we investigated the relationship between the ferric uptake regulator (Fur) and the EsrE sRNA. Electrophoresis mobility shift assays (EMSAs) and β-galactosidase activity assays demonstrated that Fur can bind to the promoter region of esrE, and positively regulate EsrE sRNA expression in the presence of Fe2+.
Keywords
Small RNA; EsrE; DNA affinity chromatography; Fur; transcriptional regulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen Z, Lewis KA, Shultzaberger RK, Lyakhov IG, Zheng M, Doan B, et al. 2007. Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res. 35: 6762-6777.   DOI
2 Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, et al. 2001. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11: 941-950.   DOI
3 Saito S, Kakeshita H, Nakamura K. 2009. Novel small RNAencoding genes in the intergenic regions of Bacillus subtilis. Gene 428: 2-8.   DOI
4 Baekkedal C, Haugen P. 2015. The Spot 42 RNA: a regulatory small RNA with roles in the central metabolism. RNA Biol. 12: 1071-1077.   DOI
5 Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. 2014. MicL, a new ${\sigma}E$-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev. 28: 1620-1634.   DOI
6 Beisel CL, Storz G. 2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34: 866-882.   DOI
7 Mandin P, Chareyre S, Barras F. 2016. A regulatory circuit composed of a transcription factor, IscR, and a regulatory RNA, RyhB, controls Fe-S cluster delivery. MBio. 7: e00966-16.
8 Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E. 2007. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64: 1260-1273.   DOI
9 Vecerek B, Moll I, Blasi U. 2007. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26: 965-975.   DOI
10 Kim HM, Shin JH, Cho YB, Roe JH. 2014. Inverse regulation of Fe- and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3'UTR of the sodF mRNA. Nucleic Acids Res. 42: 2003-2014.   DOI
11 Xia H, Yang X, Tang Q, Ye J, Wu H, Zhang H. 2017. EsrE-a yigP locus-encoded transcript-is a 3' UTR sRNA involved in the respiratory chain of E. coli. Front. Microbiol. 8: 1658.   DOI
12 Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D, Rudel T, Beier D. 2017. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. Microbiology 163: 1081-1092.   DOI
13 Durand S, Storz G. 2010. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol. Microbiol. 75: 1215-1231.   DOI
14 Chen Z, Wang Y, Li Y, Li Y, Fu N, Ye J, et al. 2012. Esre: a novel essential non-coding RNA in Escherichia coli. FEBS Lett. 586: 1195-1200.   DOI
15 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
16 Peschke U, Schmidt H, Zhang HZ, Piepersberg W. 1995. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol. Microbiol. 16: 1137-1156.   DOI
17 Wang Y, Ye J, Zhang H. 2012. Identification of transcriptional regulatory sequences of yigP gene in Escherichia coli. Wei Sheng Wu Xue Bao 52: 566-572.
18 Jutras BL, Verma A, Stevenson B. 2012. Identification of novel DNA-binding proteins using DNA-affinity chromatography/pull down. Curr. Protoc. Microbiol. Chapter 1: Unit1F.1.
19 Hempelmann E, Krafts K. 2017. The mechanism of silver staining of proteins separated by SDS polyacrylamide gel electrophoresis. Biotech. Histochem. 92: 79-85.   DOI
20 Hou B, Lin Y, Wu H, Guo M, Petkovic H, Tao L, et al. 2018. The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis. J. Bacteriol. 200: e00447-17.
21 Kavita K, de Mets F, Gottesman S. 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42: 53-61.   DOI
22 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI
23 Hoopmann MR, Weisbrod CR, Bruce JE. 2010. Improved strategies for rapid identification of chemically cross-linked peptides using protein interaction reporter technology. J. Proteome. Res. 9: 6323-6333.   DOI
24 Wagner EGH,Romby P. 2015. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv. Genet. 90: 133-208.   DOI
25 Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N, Bar A, et al. 2016. Global mapping of small RNA-target interactions in bacteria. Mol. Cell. 63: 884-897.   DOI
26 Frohlich KS, Gottesman S. 2018. Small regulatory RNAs in the enterobacterial response to envelope damage and oxidative stress. Microbiol. Spectr. 6: RWR-0022-2018.
27 Gimpel M, Brantl S. 2016. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol. 13: 916-926.   DOI
28 Evguenieva-Hackenberg E, Klug G. 2011. New aspects of RNA processing in prokaryotes. Curr. Opin. Microbiol. 14: 587-592.   DOI
29 Klein G, Raina S. 2017. Small regulatory bacterial RNAs regulating the envelope stress response. Biochem. Soc. Trans. 45: 417-425.   DOI
30 da Silva Neto JF, Braz VS, Italiani VC, Marques MV. 2009. Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res. 37: 4812-4825.   DOI
31 Fillat MF. 2014. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch. Biochem. Biophys. 546: 41-52.   DOI
32 Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO. 2014. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat. Commun. 5: 4910.   DOI
33 Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, Cockayne A, et al. 2011. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int. J. Med. Microbiol. 301: 44-52.   DOI
34 Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, et al. 2019. Manganese detoxification by MntE is critical for resistance to oxidative stress and virulence of Staphylococcus aureus. MBio. 10: pii: e02915-18.
35 Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect.Microbiol. 3: 59.
36 Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 4620-4625.   DOI
37 Chao Y, Vogel J. 2016. A 3' UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61: 352-363.   DOI
38 Pannekoek Y, Huis In't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, et al. 2017. Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Furcontrolled small noncoding RNA. FEBS Open Bio. 7: 1302-1315.   DOI
39 Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B, Raina S. 2016. Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective. J. Biol. Chem. 291: 22999-23019.   DOI
40 Zhang Y, Yan D, Xia L, Zhao X, Osei-Adjei G, Xu S, et al. 2017. The malS-5'UTR regulates hisG, a key gene in the histidine biosynthetic pathway in Salmonella enterica serovar Typhi. Can. J. Microbiol. 63: 287-295.   DOI
41 Klein G, Kobylak N, Lindner B, Stupak A, Raina S. 2014. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J. Biol. Chem. 289: 14829-14853.   DOI
42 Zhao X, Liu R, Tang H, Osei-Adjei G, Xu S, Zhang Y, et al. 2018. A 3' UTR-derived non-coding RNA RibS increases expression of cfa and promotes biofilm formation of Salmonella enterica serovar Typhi. Res. Microbiol. 169: 279-288.   DOI
43 Kroger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, et al. 2018. The small RNA RssR regulates myoinositol degradation by Salmonella enterica. Sci. Rep. 8: 17739.   DOI
44 Georg J, Hess WR. 2011. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75: 286-300.   DOI
45 Georg J, Hess WR. 2018. Widespread antisense transcription in prokaryotes. Microbiol. Spectr. 6: RWR-0029-2018.
46 Manna AC, Kim S, Cengher L, Corvaglia A, Leo S, Francois P, et al. 2018. Small RNA teg49 is derived from a sarA transcript and regulates virulence genes independent of SarA in Staphylococcus aureus. Infect. Immun. 86: pii: e00635-17.