• Title/Summary/Keyword: transcription

Search Result 4,901, Processing Time 0.038 seconds

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population (β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구)

  • Bae, Sung-Min;Lee, Hae-Yong;Chae, Soo-Ahn;Oh, Dong-Jin;Park, Suk-Won;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1301-1309
    • /
    • 2011
  • The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.

Inhibition of Adipocyte Differentiation by Methanol Extracts of Oenanthe javanica Seed in 3T3-L1 Preadipocytes (돌미나리씨 추출물에 의한 3T3-L1 지방전구세포의 분화 억제)

  • Ji, Hyang Hwa;Jeong, Hyun Young;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1688-1696
    • /
    • 2012
  • Oenanthe javanica has been used as a food source and also in traditional folk medicine for its detoxifying properties and anti-microbial effects since ancient times. In this study, we evaluated the effect and mechanism of O. javanica seed methanol extract (OJSE) on adipocyte differentiation by 3T3-L1 preadipocytes. Under non-toxic conditions, OJSE treatment resulted in a dose-dependent inhibition of lipid droplet generation and triglyceride accumulation by suppressing adipocyte differentiation, which are associated with the decreased expression of key proadipogenic transcription factors including CCAAR/enhancer binding protein ${\alpha}$, ${\beta}$ ($C/EBP{\alpha}$, $C/EBP{\beta}$) and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). OJSE also significantly inhibited proliferation and differentiation of 3T3-L1 preadipocytes through G1-phase arrest, indicating that OJSE blocked mitotic clonal expansion during adipocyte differentiation. Investigation of the alteration of G1 phase arrest-related proteins indicated a dose-dependent increase in the expression of p21 and reduction in expression of cyclin E, Cdk2, E2F-1 and phospho-Rb by OSJE. Taken together, these results suggest that OJSE inhibits adipocyte differentiation by blocking the mitotic clonal expansion, which is accompanied by preadipocyte cell cycle arrest.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.

Anti-proliferative Activities of Solvent Fractions of Lees Extracts in Human Colorectal HCT116 Cells (대장암 세포주에서 주박 추출물의 유기용매 분획물의 항성장 활성)

  • Kang, Hyung-Taek;Lee, Seung Hoon;Kim, Soon Young;Kim, Mi-Sun;Shin, Woo-Chang;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • In the present study, we prepared eighty-five different kinds of lees extracts and their solvent fractions and investigated their anti-proliferative activities against human colorectal cancer HCT116 cells. HCT116 cells were treated with eighty-five solvent fractions of lees extracts and then cell viability was measured using MTS assay. Among the treated solvent fractions, three solvent fractions (KSD-E1-3, KSD-E2-3, and KSD-E4-3) were selected based on cell viability assay. In addition, we performed an oligo DNA microarray analysis to analyze the gene expression changes by treatment of KSD-E1-3 in HCT116 cells. Among the upregulated genes, we selected 4 genes (NAG-1, ATF3, p21, and DDIT3) and performed RT-PCR using gene-specific primers. Among the treated solvent fractions, KSD-E1-3 dramatically induced the expressions of the four selected genes. In addition, we investigated whether the upregulations of those genes were dependent on the transcription factor p53's presence using p53 null HCT116 cells. The results indicate that the upregulations of NAG-1, ATF3, and DDIT3 are not dependent on the p53 presence, whereas p21 is dependent on the p53 presence. These findings may help to understand the molecular mechanisms of the anti-proliferative activity mediated by rice wine lees in human colorectal cancer cells.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.

Decreased Neutrophil Apoptosis in Patients with Sepsis is Related to the Activation of NF-κB (패혈증 환자에서 NF-κB 활성화에 의한 호중구 아포프토시스의 억제)

  • Kwon, Sung Youn;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.495-509
    • /
    • 2003
  • Background : Neutrophil-mediated inflammation is usually self-limiting, because neutrophils have a remarkably short life span. Prolonged neutrophil survival, which is caused by decreased spontaneous apoptosis, leads to persistent inflammation in sepsis. Because many inflammatory cytokines, which generate signals that delay apoptosis, are regulated by nuclear factor-${\kappa}B$ transcription factor, we hypothesized that nuclear factor-${\kappa}B$ might be related to the reduced neutrophil apoptosis observed in sepsis. Methods : Neutrophils of healthy volunteers and sepsis patients were freshly isolated from venous blood. Neutrophil apoptosis was assayed with two approaches : by counting apoptotic cells under a microscope and by flow cytometry using Annexin V. The activity of nuclear factor-${\kappa}B$ was assessed by immunofluorescent staining or electrophoretic mobility shift assay. Expression of X-linked inhibitor of apoptosis was measured by western blot assay. Results : We confirmed reduced spontaneous neutrophil apoptosis in patients with sepsis. The number of apoptotic neutrophils in patients with sepsis increased to the level of that in healthy controls after cycloheximide treatment, suggesting that decreased spontaneous neutrophil apoptosis is dependent on de novo protein synthesis. In patients with sepsis, basal neutrophil nuclear factor-${\kappa}B$ was activated compared to the level in healthy controls. Moreover, a blockade of nuclear factor-${\kappa}B$ activity reversed the decreased spontaneous neutrophil apoptosis in sepsis patients. Meanwhile, X-linked inhibition of apoptosis expression, which is regulated by nuclear factor-${\kappa}B$, decreased 24 hours after incubation in healthy persons, but persisted for 24 hours in patients with sepsis. Conclusion : These observations suggest that the reduced spontaneous neutrophil apoptosis observed in patients with sepsis may be related to the induction of survival protein by nuclear factor-${\kappa}B$.

Effects of Fermented Rice Wine by Using Mycelium of Phellinus linteus on the Expression of Inflammation-Related Proteins in Human Hepatoma Cells and Rat Liver (상황버섯 균사체를 이용한 발효주가 인체간암세포와 흰쥐 간의 염증관련 단백질 발현에 미치는 영향)

  • Ahn Seung-Min;Lee Jun-Hyuk;Choi Yung-Hyun;Lee Yong-Tae;Chung Kyung-Tae;Jeong Young-Kee;Jo Un-Bock;Choi Byung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.101-107
    • /
    • 2006
  • We have recently discovered that mycelium of Phellinus linteus, popular medical mushrooms in Korea, possess alcohol dehydrogenase and produce alcohol. In the present study, it was examined that the effect of fermented rice wine made by using mycelium of P. linteus (FLMP) on the expression of in-flammation-related proteins in both $HepG_2$ cells and rats. To examine the effect of FLMP on the morphology and expression of inflammatory proteins in $HepG_2$ cells, the cells were incubated with ethanol, and FLMP for 24 hours, and then analyzed by microscopic observation and Western blot and reverse transcription polymerase chain reaction (RT-PCR). While ethanol induced the morphological change accompanied with cell debris formation and scattering on $HepG_2$ cells, FLMP had no effect. The results of Western blot and RT-PCR analyses showed that the level of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1 and COX-2 was induced by ethanol, however, FLMP inhibited the expression of these proteins and its mRNAs. In the animal model, the value of flutamate oxaloacetate transaminase and glutamate pyruvate transaminase was significantly increased by administration with ethanol. But the group administrated with FLMP showed lower levels on the changes of these markers compared with ethanol-administrated group. Besides, the results of Western blot and RT-PCR analyses showed that the expression of inflammatory proteins such as iNOS, COX-1 and COX-2 was not affected by FLMP administration in rat liver. About histopathological and immunohistochemical observations, inflammatory loci were markedly decreased in the FLMP-administrated rat compared to ethanol-administrated rats and showed weaker COX-2 and iNOS jmmunoreactions. These results suggested that FLMP showed slight changes on the inflammatory proteins expression compared to ethanol and FLMP may be used as a functional alcoholic beverage.

Effects of Endocrine Disruptors on the Expression of Estrogen Receptors in Ovary and Uterus from Immature Rats (내분비계 장애물질이 미성숙한 흰쥐의 난소와 자궁에서의 에스트로겐 수용체 발현에 미치는 효과)

  • Lee, Kyeung-Yeup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2006
  • Although some phytoes rogens might have beneficiary rather than adverse effects, most endocrine disrupting compounds(EDCs) are considered to be harmful to human and wildlife health through interfering the endocrine system. Previously we found that prepubertal exposure to genistein(GS), a well-known isoflavone phytoestrogen, could activate the reproductive system of immature female rats resulting precocious puberty. Interestingly, di(2-ethyl hexyl) phthalate(DEHP) exposure brought inverse result, a delayed puberty, in the same experimental regimen. In this study, we examined whether prepubertal exposure to GS or DEHP affect the gene expressions of estrogen receptors($ER\;{\alpha}$ and $ER\;{\beta}$) and LH receptor(LHR) which represent the maturational status of ovary and uterus in immature rats. GS (100 mg/kg/day) was administered daily from postnatal day 25 to the day when the first vaginal opening(VO) was observed, and the animals were sacrificed on the next day(day 32). Similarly, DEHP(l00 mg/kg/day) was administered daily from postnatal day 25 through the day when the first V.O. in control group was observed, and the animals were sacrificed on the next day(day 36). To determine the transcriptional changes in the hormone receptors, total RNAs were extracted from ovary and uterus and were applied to semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). In the GS group, the transcriptional activities of $ER\;{\alpha}$, $ER\;{\beta}$ and LHR in uterus and LHR in ovary were significantly increased when compared to those of control group. In the DEHP group, the transcriptional activities of all the hormone receptors measured were significantly lowered when compared to those of control group. These alteration of the reproductive hormone receptor expressions in ovary and uterus might be represent the phenotypic aspects(secondary sexual characteristics) such as tissue weights and reproductive hormone levels during perinatal period in immature female rats.

  • PDF

Identification and Characterization of Three Isolates of Cucumber mosaic virus Isolated from Weed Hosts (잡초에서 분리한 3종 Cucumber mosaic virus의 동정과 특성)

  • Lee, Hyeok-Geun;Kim, Sung-Ryul;Jeon, Yong-Woon;Kwon, Soon-Bae;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Three isolates of Cucumber mosaic virus (CMV) were isolated from weed hosts showing typical mosaic symptoms, and some properties of the viruses were investigated. CMV isolates, designated as Is-CMV, Jd-CMV and Pla-CMV from Isodon inflexus, Jeffersonia dubia and Phryma leptostachya var. asiatica, respectively, were identified and characterized by biological reaction in several host plants, serological property, dsRNA analysis, reverse transcription-polymerase chain reaction (RT-PCR), restriction fragment-length polymorphism (RFLP). All isolates systemically infected in Nicotiana benthamiana, Cucurbita pepo cv. Black beauty and Cucumis sativus, and did not reveal any differences in these host plants between the isolates. However, remarkable difference in the symptoms was found between the CMVs in Capsicum annuum. Is-CMV induced an asymptomatic symptoms, while Jd-CMV and Pla-CMV produced severe mosaic symptoms in C. annuum plants. In dsRNA analysis, all isolates revealed four major bands with estimated molecular size of 3.4, 3.2, 2.1 and 1.0 kbp. The cDNAs of coat protein gene of the isolates were amplified by RT-PCR using a genus-specific single pair primers that designed to amplify a DNA fragment of approximately ranging from 938 to 966 bp. By restriction mapping analysis using RFLP of the RT-PCR products as well as by serological properties of gel diffusion test, the CMV isolates belong to a typical members of CMV subgroup IA. This is the first report on the occurrence of CMV in the three weed hosts.

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.