Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.9.1301

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population  

Bae, Sung-Min (Department of Microbiology, Chung-Ang University College of Medicine)
Lee, Hae-Yong (Department of Microbiology, Chung-Ang University College of Medicine)
Chae, Soo-Ahn (Department of Pediatrics, Chung-Ang University College of Medicine)
Oh, Dong-Jin (Department of Internal Medicine, Chung-Ang University College of Medicine)
Park, Suk-Won (Department of Radiation Oncology, Chung-Ang University College of Medicine)
Yoon, Yoo-Sik (Department of Microbiology, Chung-Ang University College of Medicine)
Publication Information
Journal of Life Science / v.21, no.9, 2011 , pp. 1301-1309 More about this Journal
Abstract
The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.
Keywords
${\beta}$-catenin; adipogenesis; SNPs; siRNA; triglyceride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zuckerman, J. E., T. Hsueh, R. C. Koya, M. E. Davis, and A. Ribas. 2011. siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J. Invest. Dermatol. 131, 453-460.   DOI
2 Salpea, K. D., D. R. Gable, J. A. Cooper, J. W. Stephens, S. J. Hurel, H. A. Ireland, M. D. Feher, I. F. Godsland, and S. E. Humphries. 2009. The effect of WNT5B IVS3C>G on the susceptibility to type 2 diabetes in UK Caucasian subjects. Nutr. Metab. Cardiovasc. Dis. 19, 140-145.   DOI
3 Shao, D. and M. A. Lazar. 1997. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem. 272, 21473-21478.   DOI
4 Van Tienen, F. H., H. Laeremans, C. J. Van der Kallen, and H. J. Smeets. 2009. Wnt5b stimulates adipogenesis by activating PPARgamma, and inhibiting the beta-catenin dependent Wnt signaling pathway together with Wnt5a. Biochem. Biophys. Res. Commun. 387, 207-211.   DOI
5 Vermeulen, A. 1993. Metabolic effects of obesity in men. Verh. K. Acad. Geneeskd. Belg. 55, 383-393.
6 Wall, N. R., and Y. Shi. 2003. Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401-1403.   DOI
7 Wang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshutz, M. Chee, and E. S. Lander. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077-1082.   DOI
8 Wang, K., W. D. Li, C. K. Zhang, Z. Wang, J. T. Glessner, S. F. Grant, H. Zhao, H. Hakonarson, and R. A. Price. 2011. A genome-wide association study on obesity and obesity-related traits. PLoS One 6, e18939.   DOI
9 Yamaguchi, Y., M. Moritani, T. Tanahashi, D. Osabe, K. Nomura, Y. Fujita, P. Keshavarz, K. Kunika, N. Nakamura, T. Yoshikawa, E. Ichiishi, H. Shiota, N. Yasui, H. Inoue, and M. Itakura. 2008. Lack of association of genetic variation in chromosome region 15q14-22.1 with type 2 diabetes in a Japanese population. BMC Med. Genet. 9, 22.
10 Ma, X., X. Ren, P. Han, S. Hu, J. Wang, and J. Yin. 2010. SiRNA against Fabp5 induces 3T3-L1 cells apoptosis during adipocytic induction. Mol. Biol. Rep. 37, 4003-4011.   DOI
11 Moldes, M., Y. Zuo, R. F. Morrison, D. Silva, B. H. Park, J. Liu, and S. R. Farmer. 2003. Peroxisome-proliferator- activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem. J. 376, 607-613.   DOI
12 Morrison, R. F. and S. R. Farmer. 1999. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J. Biol. Chem. 274, 17088-17097.   DOI
13 Ntambi, J. M. and K. Young-Cheul. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130, 3122S-3126S.
14 Sakurai, K., M. Amarzguioui, D. H. Kim, J. Alluin, B. Heale, M. S. Song, A. Gatignol, M. A. Behlke, and J. J. Rossi. 2011. A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res. 39, 1510-1525.   DOI
15 Pereira, D. S., D. M. Garcia, F. M. Narciso, M. L. Santos, J. M. Dias, B. Z, Queiroz, E. R. Souza, O. T. Nobrega, and L. S. Pereira. 2011. Effects of 174 G/C polymorphism in the promoter region of the interleukin-6 gene on plasma IL-6 levels and muscle strength in elderly women. Braz. J. Med. Biol. Res. 44, 123-129.   DOI
16 Qin, L., Y. Chen, Y. Niu, W. Chen, Q. Wang, S. Xiao, A. Li, Y. Xie, J. Li, X. Zhao, Z. He, and D. Mo. 2010. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11, 320.   DOI
17 Ross, S. E., N. Hemati, K. A. Longo, C. N. Bennett, P. C. Lucas, R. L. Erickson, and O. A. MacDougald. 2000. Inhibition of adipogenesis by Wnt signaling. Science 289, 950-953.   DOI   ScienceOn
18 Dahlman, I. and P. Arner. 2010. Genetics of adipose tissue biology. Prog. Mol. Biol. Transl. Sci. 94, 39-74.   DOI
19 Gustafson, B., and U. Smith. 2006. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. Biol. Chem. 281, 9507-9516.   DOI
20 Hollister, L. E., J. E. Overall, and H. L. Snow. 1967. Relationship of obesity to serum triglyceride, cholesterol, and uric acid, and to plasma-glucose levels. Am. J. Clin. Nutr. 20, 777-782.
21 Huelsken, J. and J. Behrens. 2002. The Wnt signalling pathway. J. Cell Sci. 115, 3977-3978.   DOI
22 Liu, J. and S. R. Farmer. 2004. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 279, 45020-45027.   DOI
23 Kawai, M., S. Mushiake, K. Bessho, M. Murakami, N. Namba, C. Kokubu, T. Michigami, and K. Ozono. 2007. Wnt/Lrp/beta-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARgamma and C/EBPalpha. Biochem. Biophys. Res. Commun. 363, 276-282.   DOI
24 Lee, H., S. Bae, K. Kim, W. Kim, S. I. Chung, and Y. Yoon. 2010. Beta-Catenin mediates the anti-adipogenic effect of baicalin. Biochem. Biophys. Res. Commun. 398, 741-746.   DOI
25 Lee, H., R. Kang, S. Bae, and Y. Yoon. 2011. AICAR, an activator of AMPK, inhibits adipogenesis via the WNT/beta-catenin pathway in 3T3-L1 adipocytes. Int. J. Mol. Med. 28, 65-71.
26 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.   DOI
27 Behari, J., T. H. Yeh, L. Krauland, W. Otruba, B. Cieply, B. Hauth, U. Apte, T. Wu, R. Evans, and S. P. Monga. 2010. Liver-specific beta-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. Am. J. Pathol. 176, 744-753.   DOI
28 Ahmadian, A., B. Gharizadeh, A. C. Gustafsson, F. Sterky, P. Nyren, M. Uhlen, and J. Lundeberg. 2000. Single-nucleotide polymorphism analysis by pyrosequencing. Anal. Biochem. 280, 103-110.   DOI
29 Al-Shemari, H., Y. Bosse, T. J. Hudson, M. Cabaluna, M. Duval, M. Lemire, S. Vallee-Smedja, S. Frenkiel, and M. Desrosiers. 2008. Influence of leukotriene gene polymorphisms on chronic rhinosinusitis. BMC Med. Genet. 9, 21.
30 Albrink, M. J. and J. W. Meigs. 1965. The relationship between serum triglycerides and skinfold thickness in obese subjects. Ann. N. Y. Acad. Sci. 131, 673-683.   DOI
31 Cadigan, K. M. and Y. I. Liu. 2006. Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395-402.   DOI
32 Cha, M. H., I. C. Kim, K. S. Kim, B. K. Kang, S. M. Choi, and Y. Yoon. 2007. Association of UCP2 and UCP3 gene polymorphisms with serum high-density lipoprotein cholesterol among Korean women. Metabolism 56, 806-813.   DOI