Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.7.1054

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition  

Lee, Hae-Yong (Department of Microbiology, Chung-Ang University College of Medicine)
Kang, Ryun-Hwa (Department of Microbiology, Chung-Ang University College of Medicine)
Bae, Sung-Min (Department of Microbiology, Chung-Ang University College of Medicine)
Chae, Soo-Ahn (Department of Pediatrics, Chung-Ang University College of Medicine)
Lee, Jung-Ju (Department of Pediatrics, Chung-Ang University College of Medicine)
Oh, Dong-Jin (Department of Internal Medicine, Chung-Ang University College of Medicine)
Park, Suk-Won (Department of Radiation Oncology, Chung-Ang University College of Medicine)
Cho, Soo-Hyun (Department of Family Medicine, Chung-Ang University College of Medicine)
Shim, Yae-Jie (Department of General Education, Seoul Women's University)
Yoon, Yoo-Sik (Department of Microbiology, Chung-Ang University College of Medicine)
Publication Information
Journal of Life Science / v.20, no.7, 2010 , pp. 1054-1065 More about this Journal
Abstract
SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.
Keywords
SH21B; adipogenesis; microarray; transcriptome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shang, W., Y. Yang, L. Zhou, B. Jiang, H. Jin, and M. Chen. 2008. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 198, 561-569.   DOI
2 Shimomura, I., R. E. Hammer, J. A. Richardson, S. Ikemoto, Y. Bashmakov, J. L. Goldstein, and M. S. Brown. 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182-3194.   DOI
3 Tang, Q. Q., T. C. Otto, and M. D. Lane. 2003. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. USA 100, 44-49.   DOI
4 Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156.   DOI
5 Wang, C., N. Pattabiraman, J. N. Zhou, M. Fu, T. Sakamaki, C. Albanese, Z. Li, K. Wu, J. Hulit, P. Neumeister, P. M. Novikoff, M. Brownlee, P. E. Scherer, J. G. Jones, K. D. Whitney, L. A. Donehower, E. L. Harris, T. Rohan, D. C. Johns, and R. G. Pestell. 2003. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol. Cell Biol. 23, 6159-6173.   DOI
6 Zeeberg, B. R., W. Feng, G. Wang, M. D. Wang, A. T. Fojo, M. Sunshine, S. Narasimhan, D. W. Kane, W. C. Reinhold, S. Lababidi, K. J. Bussey, J. Riss, J. C. Barrett, and J. N. Weinstein. 2003. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28.   DOI
7 Zhao, J., T. Izumi, K. Nunomura, S. Satoh, and S. Watanabe. 2007. MARCKS-like protein, a membrane protein identified for its expression in developing neural retina, plays a role in regulating retinal cell proliferation. Biochem. J. 408, 51-59.   DOI
8 Perseghin, G., K. Petersen, and G. I. Shulman. 2003. Cellular mechanism of insulin resistance: potential links with inflammation. Int. J. Obes. Relat. Metab. Disord. 27 Suppl 3, S6-11.   DOI
9 Rosen, E. D. and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat Rev. Mol. Cell Biol. 7, 885-896.   DOI
10 Ross, S. E., N. Hemati, K. A. Longo, C. N. Bennett, P. C. Lucas, R. L. Erickson, and O. A. MacDougald. 2000. Inhibition of adipogenesis by Wnt signaling. Science 289, 950-953.   DOI   ScienceOn
11 Sage, J., A. L. Miller, P. A. Perez-Mancera, J. M. Wysocki, and T. Jacks. 2003. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223-228.   DOI
12 Saxena, N., S. Banerjee, K. Sengupta, M. N. Zoubine, and S. K. Banerjee. 2001. Differential expression of WISP-1 and WISP-2 genes in normal and transformed human breast cell lines. Mol. Cell Biochem. 228, 99-104.   DOI
13 Schoonjans, K., J. Peinado-Onsurbe, A. M. Lefebvre, R. A. Heyman, M. Briggs, S. Deeb, B. Staels, and J. Auwerx. 1996. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336-5348.
14 Lee, H., R. Kang, Y. Hahn, Y. Yang, S. S. Kim, S. H. Cho, S. I. Chung, and Y. Yoon. 2009. Antiobesity effect of baicalin involves the modulations of proadipogenic and antiadipogenic regulators of the adipogenesis pathway. Phytother. Res. 23, 1615-1623.   DOI
15 Sethi, J. K. and A. J. Vidal-Puig. 2007. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 48, 1253-1262.   DOI
16 Shang, W., Y. Yang, B. Jiang, H. Jin, L. Zhou, S. Liu, and M. Chen. 2007. Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression. Life Sci. 80, 618-625.   DOI
17 Kokkinaki, M., T. L. Lee, Z. He, J. Jiang, N. Golestaneh, M. C. Hofmann, W. Y. Chan, and M. Dym. 2009. The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol. Reprod. 80, 707-717.   DOI
18 Lee, H., R. Kang, and Y. Yoon. 2009. SH21B, an anti-obesity herbal composition, inhibits fat accumulation in 3T3-L1 adipocytes and high fat diet-induced obese mice through the modulation of the adipogenesis pathway. J. Ethnopharmacol. DOI: 10.1016/j.jep.2009.12.002.
19 Liu, A. X., N. Rane, J. P. Liu, and G. C. Prendergast. 2001. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell Biol. 21, 6906-6912.   DOI
20 Liu, J., H. Wang, Y. Zuo, and S. R. Farmer. 2006. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol. Cell Biol. 26, 5827-5837.   DOI
21 Fajas, L. 2003. Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Ann. Med. 35, 79-85.   DOI
22 Lockhart, D. J., H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675-1680.   DOI
23 Olaso, E., J. P. Labrador, L. Wang, K. Ikeda, F. J. Eng, R. Klein, D. H. Lovett, H. C. Lin, and S. L. Friedman. 2002. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J. Biol. Chem. 277, 3606-3613.   DOI
24 Derouet, D., F. Rousseau, F. Alfonsi, J. Froger, J. Hermann, F. Barbier, D. Perret, C. Diveu, C. Guillet, L. Preisser, A. Dumont, M. Barbado, A. Morel, O. deLapeyriere, H. Gascan, and S. Chevalier. 2004. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc. Natl. Acad. Sci. USA 101, 4827-4832.
25 Fajas, L., K. Schoonjans, L. Gelman, J. B. Kim, J. Najib, G. Martin, J. C. Fruchart, M. Briggs, B. M. Spiegelman, and J. Auwerx. 1999. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 19, 5495-5503.
26 Freytag, S. O., D. L. Paielli, and J. D. Gilbert. 1994. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8, 1654-1663.   DOI
27 Ashida, H., T. Furuyashiki, H. Nagayasu, H. Bessho, H. Sakakibara, T. Hashimoto, and K. Kanazawa. 2004. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors 22, 135-140.   DOI
28 Fu, M., M. Rao, T. Bouras, C. Wang, K. Wu, X. Zhang, Z. Li, T. P. Yao, and R. G. Pestell. 2005. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem. 280, 16934-16941.   DOI
29 Guo, X. and K. Liao. 2000. Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene 251, 45-53.   DOI
30 Hulit, J., C. Wang, Z. Li, C. Albanese, M. Rao, D. Di Vizio, S. Shah, S. W. Byers, R. Mahmood, L. H. Augenlicht, R. Russell, and R. G. Pestell. 2004. Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol. Cell Biol. 24, 7598-7611.   DOI
31 Bai, F., X. H. Pei, T. Nishikawa, M. D. Smith, and Y. Xiong. 2007. p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol. Cell Biol. 27, 1495-1504.   DOI
32 Bajenaru, M. L., J. Donahoe, T. Corral, K. M. Reilly, S. Brophy, A. Pellicer, and D. H. Gutmann. 2001. Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia. 33, 314-323.   DOI
33 Bennett, C. N., S. E. Ross, K. A. Longo, L. Bajnok, N. Hemati, K. W. Johnson, S. D. Harrison, and O. A. MacDougald. 2002. Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277, 30998-31004.   DOI
34 Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060.   DOI
35 Cadigan, K. M. and Y. I. Liu. 2006. Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395-402.   DOI
36 Cao, Y., G. Bonizzi, T. N. Seagroves, F. R. Greten, R. Johnson, E. V. Schmidt, and M. Karin. 2001. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763-775.   DOI
37 Corazzari, M., P. E. Lovat, S. Oliverio, F. Di Sano, R. P. Donnorso, C. P. Redfern, and M. Piacentini. 2005. Fenretinide: a p53-independent way to kill cancer cells. Biochem. Biophys. Res. Commun. 331, 810-815.   DOI