• Title/Summary/Keyword: transcendental meromorphic function

Search Result 25, Processing Time 0.02 seconds

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

DYNAMICAL PROPERTIES ON THE ITERATION OF CF-FUNCTIONS

  • Yoo, Seung-Jae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 1999
  • The purpose of this paper is to show that if the Fatou set F(f) of a CF-meromorphic function f has two completely invariant components, then they are the only components of F(f) and that the Julia set of the entire transcendental function $E_{\lambda}(z)={\lambda}e^z$ for 0 < ${\lambda}$ < $\frac{1}{e}$ contains a Cantor bouquet by employing the Devaney and Tangerman's theorem[10].

  • PDF

COMPLEX DELAY-DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE

  • NAGASWARA, P.;RAJESHWARI, S.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.507-513
    • /
    • 2022
  • In this paper, we investigate some results on complex delay-differential equations of the classical Malmquist theorem. A classic illustrations of their results states us that if a complex delay equation w(t + 1) + w(t - 1) = R(t, w) with R(t, w) rational in both arguments admits (concede) a transcendental meromorphic solution of finite order, then degwR(t, w) ≤ 2. Development and upgrade of such results are presented in this paper. In addition, Borel exceptional zeros and poles seem to appear in special situations.

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE

  • Chen, Min Feng;Gao, Zong Sheng
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.361-373
    • /
    • 2017
  • In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of $Br{\ddot{u}}ck$ conjecture. In other words, we consider ${\Delta}_{\eta}f(z)=f(z+{\eta})-f(z)$ and f'(z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where ${\eta}{\in}{\mathbb{C}}{\backslash}\{0\}$ is a constant such that $f(z+{\eta})-f(z){\not\equiv}0$.