• 제목/요약/키워드: trajectory tracking control

검색결과 520건 처리시간 0.029초

직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가 (Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot)

  • 홍윤식;강봉수;김수현;박기환;곽윤근
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.

이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계 (Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots)

  • 김용백;박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.503-509
    • /
    • 2014
  • 본 논문에서는 이동 로봇의 군집 제어를 위해 실시간 적응 신경 회로망 보상기를 갖는 PID 제어기를 제안한다. 전체 제어 시스템은 선도-추종 로봇 접근법에 의한 기구학 제어기와 이동 로봇의 동역학을 고려한 동적 제어기로 구성되어 있다. 동적 제어기는 PID 제어기에 동특성 변화를 보상하고 성능을 개선시키기 위해 실시간 학습 기능을 가진 신경 회로망 보상기로 구성하였다. 모의실험을 통해 원형 궤적과 직선 궤적에 대해 PID 제어기와 신경 회로망 보상기의 성능을 비교하였다. 이를 통해 실시간 학습 기능을 가진 신경 회로망 보상기가 PID 제어기의 성능을 향상시킴으로써 군집 제어에서 추종 로봇의 추종 성능을 향상시키는 것을 확인하였다.

복합시스템을 위한 간접분산학습제어 (Indirect Decentralized Learning Control for the Multiple Systems)

  • Lee, Soo-Cheol
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 1996년도 추계학술발표회 발표논문집
    • /
    • pp.217-227
    • /
    • 1996
  • The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performin this specific task. In a previous work[6], the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification ad control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  • PDF

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF

포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계 (UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control)

  • 한기훈;김유단
    • 한국항공우주학회지
    • /
    • 제36권5호
    • /
    • pp.448-454
    • /
    • 2008
  • 본 논문에서는 포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 행동양식 기반의 분산형 군집비행 제어구조를 제안하였다. 군집비행 행동양식을 위해 각 개체의 상호작용을 포텐셜 함수로 표현하였으며, 군집형태를 유지하며 기준궤적을 추종하기 위해 군집중심점 제어기법을 제안하였다. 시스템의 불확실성과 임무환경에 의한 포텐셜 함수 변화에 대해 강건한 성능을 유지하기 위해 슬라이딩 모드 제어기법을 적용하여 제어기를 구성하고 안정성을 평가하였다. 또한 예상하지 못한 장애물에 대한 군집 회피기동을 위해 비행경로 수정기법을 제시하였다. 수치 시뮬레이션을 통해 제안한 군집비행 제어기법의 성능을 평가하였다.

디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계 (Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors)

  • 김용태;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

복합시스템을 위한 간접분산학습제어 (Indirect Decentralized Learning Control for the Multiple Systems)

  • Lee, Soo-Cheol
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1996년도 추계 학술 발표회 발표논문집
    • /
    • pp.217-227
    • /
    • 1996
  • The new filed of learning control develops controllers that learn to improve their performance at executing a given task , based on experience performing this specific task. In a previous work[6], authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper develops improved indirect learning control algorithms, and studies the use of such controller indecentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an asssembly line. This paper starts with decentralized discrete time systems. and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The resultof the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample tie in the digital learning controller is sufficiently short.

비선형 슬라이딩 평면을 이용한 슬라이딩 제어 (The Sliding Control using Nonlinear Sliding Surfaces)

  • 한종길
    • 한국전자통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1133-1138
    • /
    • 2012
  • 본 논문은 최적제어에 기초하여 비선형 슬라이딩 평면을 설계하는 것이다. 최적제어입력에 의한 상태 궤적을 Frobenius 정리와 matrix decomposition 방법에 의해 구하였고, 이 궤적을 시스템의 슬라이딩 평면으로 설정하였다. 상태는 초기부터 슬라이딩 평면을 유지하며, 그 결과 초기상태 단계로부터 전 영역까지 시스템의 강인성은 보장 받을 수 있으며, 도달시간 동안 발생 될 수 있는 불확실성과 외란의 영향을 제거되고, 큰 제어 입력의 문제도 해결할 수 있었다. 그리고 최적경로를 슬라이딩 평면으로 설정함으로 추적시간을 줄일 수 있었다. 역진자 시스템을 사용하여 그 타당성을 보인다.

무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계 (Guidance and Control System Design for Automatic Carrier Landing of a UAV)

  • 구소연;이동우;김기준;라충길;김승균;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

전기 유압 매니플레이터의 강건 힘 제어 (Robust Force Control of a 6-Link Electro-Hydraulic Manipulator)

  • 안경관;조용래;양순용;이병룡
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.