Proceedings of the Korea Association of Information Systems Conference (한국정보시스템학회:학술대회논문집)
- 1996.11a
- /
- Pages.217-227
- /
- 1996
Indirect Decentralized Learning Control for the Multiple Systems
복합시스템을 위한 간접분산학습제어
Abstract
The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performin this specific task. In a previous work[6], the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification ad control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.
Keywords