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ABSTRACT

The new field of learning control develops controllers that learn to improve their
performance at executing a given task, based on experience performing this specific
task. In a previous work[6], the authors presented a theory of indirect learning
control based on use of indirect adaptive control concepts employing simultaneous
identification and control. This paper develops improved indirect learning control
algorithms, and studies the use of such controllers in decentralized systems. The
original motivation of the learning control field was learning in robots doing repetitive
tasks such as on an assembly line. This paper starts with decentralized discrete time
systems, and progresses to the robot application, modeling the robot as a time varying
linear system in the neighborhood of the nominal trajectory, and using the usual robot
controllers that are decentralized, treating each link as if it is independent of any
coupling with other links. The basic result of the paper is to show that stability of
the indirect learning controllers for all subsystems when the coupling between
subsystems is turned off, assures convergence to zero tracking error of the
decentralized indirect learning control of the coupled system, provided that the sample
time in the digital learning controller is sufficiently short.

[. INTRODUCTION

When a control system is required to execute the same command repeatedly, the error
in following the command will be repeated (except for random disturbances). It
seems a bit primitive to produce the same errors every time the command is given.
The new field of learning control refers to controllers that can learn from previous
experience executing a command in order to improve their performance. They learn
what command input should be given to the system in order to have the response be
the desired response. They eliminate the deterministic errors of the control system in
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executing the command, and they eliminate errors due to disturbances that repeat each
time the command is given. Learning controllers aim to accomplish this with minimal
knowledge of the system being controlled, and base their adjustments to the command
on previous experience performing the command without relying on an a priori model
of the system dynamics. There has been considerable research activity in this field in
the last few years, some examples of which are given in the references [1-9].
Learning control has application to all tracking problems in which the command is
given repeatedly, but the application that motivated the development of the field in the
last few vears is robots performing repeated tracking commands, for example on an
assembly line. The question arises, what happens if a separate learning controller is
used with each of the separate feedback controllers of the robot arm. Such an
application represents use of a decentralized learning control. A serious issue is
whether the dynamic interactions in the dynamics of the systems governed by the
separate learning controllers could cause the learning processes to fail to converge. It
is the purpose of this paper to extend the indirect learning control law of [4] to apply
to decentralized control situations. In the process we will develop modified forms of
the indirect learning control law with various desirable properties.

oO. MATHEMATICAL FORMULATION

The s coupled subsystems can be written as one large state eguation in an obvious

manner

x(k+1) = AR x(R + B(Aulk + wlk)
y(k) = C(k) x(k) _ (1)

Let the difference operator &, operating on any quantity represent the value of that

quantity at repetition r minus the value at repetition r -1. Since w(k) repeats each
repetition, and since in the learning control problem it is assumed that the initial
condition is the same every repetition, we can rewrite (1) as

6,y = Pé,u (2)
vy =[y" () vy (@ ..Y" (D"
u =[O @) ..utp-D1"

where
C(1) B(0) 0 0
P= C(2) A(1)B(0) C(2)B(1) 0 (3)
C(p) (A2 AR B(0) Cp)y(MAZY A(R)B(1) - C(pB(p—1)

The product notation represents a matrix product going from larger arguments on

the left to smaller arguments on the right.
Bv reordering the elements of the matrices in (2) to separate elements into those
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that apply to each subsystem and those that couple the subsystems one can write (2)
in the form

0,¥;=Pyl,u;+ 21 P;o,u; (4
=

i+l

Here the Pj; and Pj; are lower block triangular matrices for the ith subsystem. The

first represents the pulse responses of the ith subsystem to its own inputs and the
second gives the pulse responses of the ith system to inputs in other subsystems.
This equation serves as the basic equation for the development of all of our
decentralized learning control strategies.

For purposes of illustration, suppose that the original system was time invariant,
contained two subsystems (s=2), and that the desired trajectory is three time steps
long (p=3). Then equation (4) for system one is

3,4’1(1) [ C131 0 0 3,%1(0)
8,y1(2)] = C, Ay B, C B, 0 3ru1(1)}
d,31(3) | (A} +ApAn)B, CAyB, CB 8,2, (2)
0 0 0 6,742 (0)
ClAlgBQ C]B] 0 6,%2(1) 5)
|CI(AAp+ApAp)B, CiApB, 0] [6,u(2)

Note that due to causality, the P; and P; matrices are lower block triangular, and
that in addition the matrices coupling the subsystems, P;', have zero diagonal block

elements. A

We will assume that the number of output variables at each time step is the same as
the number of input variables. Hence, the product C(k)B(k-1) is square, and we
furthermore require that it be full rank. This is required for the existence of a
solution. If there are more outputs than inputs in the original description of the
problem, one must limit the number of output variables which one wishes to force to
have zero tracking error. In this case, one has the option of choosing a different set
of outputs each time step so that zero tracking error is obtained for all desired output
variables at some but not at every time step. Note that making such changes from
one time step to the next will create a time-varying system from a time-invariant

one.

. THE DECENTRALIZED APPLICATION OF INDIRECT
LEARNING CONTROL

The indirect learning control of reference {41, is designed to apply to time varying
linear systems, and to apply to time invariant linear systems as a degenerate case.
Equation (4) can be thought of as a system representation in modern control form
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with the state vector being the history of the outputs for a repetition, with the
identity matrix as the system matrix, and with the changes in the inputs from one
repetition to the next as the control variables. Reference [4] shows how to apply
indirect - adaptive control in a centralized manner to such a modern control
representation operating in the repetition domain. Here we consider various possible
wayvs to apply indirect adaptive control ideas in a decentralized manner.

Since system 1 does not know what inputs are being used in other systems, in order
to allow each system to accomplish its goal of learning, the first decentralized learning
process considered here requires that at each repetition only one subsystem leamns,
and the remaining subsystems keep their learning control signals frozen. Hence, if at
repetition r it is subsystem i’s turn to learn, then equation (4) becomes

87'.21' = Piiarl'ii (6)

Such input-output pairs obtained each time it is i's turn to learn, allow the
decentralized learning controller for system i to estimate the matrix P , call it P,;_ -
Using this estimated matrix, the learning control law generates the change J,%;

required to make a change &,v; that will cancel the error according to

There are various choices for the estimation of this matrix, including the projection
algorithm, the orthogonalized projection algorithm, and the recursive least squares
algorithm. Ideally, each of these can be computed in real time from one time step to
the next, so that at the end of a repetition the information is available for immediate
use whenever the next repetition starts. An important freedom in the learning control
problem is that there is no requirement that the computation be made in real time.
There is no requirement that learning take place at every repetition, so that one can
skip learning for a repetition while one waits for the needed computation to be
completed. Note that one can make use of the lower block triangular nature of the
estimated matrix in order to obtain the inverse in a recursive manner.

The centralizéd indirect learning control results in {4] guarantee zero tracking error
without any requirement that the identified matrix ﬁ,-,-', converges to the true
matrix. This result is analogous to standard results in adaptive control theory. We
will not address such issues here. Instead we simply agree to introduce an
independent &6,z; if at some repetition, (7) produces a change in the leaning control
input which is not independent of previous changes.

Here we consider the recursive least squares algorithm because it is relatively
insensitive to noise, and because it can guarantee convergence in a finite number of
steps when the data is noise-free and independent. The equations appropriate for (7)
are given in [3]. Consider the computations made by the ith subsystem, and for the
sake of simplicity of notation, we temporarily drop explicit indication of dependence on
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i in the symbols used. Let p 1 » represent the column vector which is the transpose
of the lth row of P #»» but with the zero elements to the right of the block diagonal
deleted from the column vector. Let 6', u represent the quantity &,z but with the
elements deleted that are multiplied by these zero elements in the product P;8,u; .

And let 6', y represent the Ith row of &,y Then the recursive least squares update is

Sy~ P,
1+(8) w) TM/, 20 u
M, 0L u(8i )™M, ,,

1+(8w) ™M, ,o0iu

P,=P,,y+M, 5 u 8)

;T = 2

My, =M~

The initial value M, is chosen as the identity matrix of the same dimension as the
P /. » corresponding p 1~ Note that this matrix need only be updated when the

dimension of increases when 1 is increased, and the same M, , can be used for all

rows corresponding to the same time step in the multiple output case.

The decentralized indirect learning control algorithm based on the centralized indirect
learning control algorithm of [4] can be summarized as follows. Only one subsystem
learns during each repetition, while the other subsystems keep their learning control
signals unaltered. As the repetitions progress, each subsystem gets its opportunity to
learn in an order that is pre-chosen and known to each of the learning controllers.
Then at the repetition for which the ith subsystem learns, the learning control law for
subsystem 1 is: equation (8), together with equation (7) with a recursive computation

of ﬁz-z l,,, and together with the requirement for independent changes of the learning

control signal for this subsystem. In a later subsection we will study the
convergence behavior of this decentralized learning control scheme. We will also
develop a modified version of the algorithm requiring less computation, and producing

faster convergence.
IV. NUMERICAL EXAMPLES

This paper presented various concepts for application of learning control in a
decentralized manner, and showed that they can lead to guaranteed convergence to
zero tacking error. These concepts still leave us with a number of choices for
implementation. We can have each subsystem take turns learning, and we can choose
how often they alternate. Or we can have the subsystems learn simultaneously, but
do so in a wave, and In this case we can choose how fast to make the wave
progress. In the identification process, we also have choices. One can use the
recursive least squares method as was suggested above, or one can simply solve the
simultaneous equations for the unknowns, which can be more reasonable when the
number of unknowns is small, as is the case when learning in a wave. In this
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section we examine these options by studying several examples.

4.1. Subsystems Alternate Learning the Complete Trajectory

Figure I bresents results when this decentralized learning process is used on the
linearized model of the polar coordinate robot example, which was presented as
example 2 in Section 3.5, with 10 time steps during the 1 second maneuver. In this
figure and those that follow, subsystem 1 refers to control of radial displacement,
measured in meters, subsystem 2 controls the rotation angle, given in radians. The
top parts of this figure present repetition 1 which corresponds to using the feedback
controller alone, and then repetitions 2 through 11 correspond to having subsystem 1
doing the learning. Without noise this number of repetitions is sufficient for system 1
to learn all elements of £}, However, in this example we use the usual recursive

least squares equation (8), which has a 1 in the denominator that is introduced to
avoid the possibility of singularity. This means that the resulting identification is not
exact in the noise free case except asymptotically. The initial condition for the
recursive least squares is an a priori estimate of P; that is in error —- every element
being 10% too high. The next two parts of the figure present the corresponding
repetitions when subsystem 2 learns Py, repetitions 12 through 21. Then the
subsystems alternate learning every repetition, with subsystem 1 learning in repetition
22 Both linear plots and logarithmic plots are presented for these repetitions. By the
28th repetition the error is zero to the plotting accuracy of the linear plot.

Figure 2 simulates the same system, but the learning is alternated between
subsystems starting from the first repetition, without separate repetitions allocated for

each system to learn its own Pj The first repetition corresponds to feedback control

only, and then in the first repetition subsystem 1 learns. The theory presented
guarantees convergence for this case as well (in both cases a sufficiently small
sample time must be used). On the linear plots, essentially zero tracking érror is
reached after 7 repetitions, which is much faster than the 28th repetition in the
previous case. This difference would be even more extreme if there were more time
steps in the trajectory. We conclude that it is best to start alternating from the first

repetition..
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Fig. 1 Error histories for the linearized polar coordinate robot using
alternate learning after initial identification of by each subsystem.
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Fig. 2 Error histories for decentalized learning in the linearized polar
coordinate mode! using alternate learning every repetition starting with
repetition 2.

4.2. Subsystems Learn Progressive Time-Steps Simultaneously
In the decentralized learning method of the above examples, each subsystem
eventually needs to identify all elements of its P; matrix. When the subsystems

learn simultaneously, one time step at a time, the identification is limited to having
each subsystem find the instantaneous value of its own input-output matrix product.
Rather than use the recursive least squares approach of (8), here we compute this
product as follows:

u; (k) = u; ., (k) +8,u;(k)
where

S,u (k) =[E,(C;(k+1) B;() 17" (v} (k+1) — y; ,— (k+1)) 9

The estimate E,.;(C;(k+1) B;(k) of C;(k+1)B;(k) of subsystem i is chosen as

the latest value according to

8,v;(k+1)

E i (Ci(k+DB:i(R) = =57

(10)

Care must be taken to avoid singularity problems in performing this division, when
the learning control signal approaches convergence. We will vary the number of
repetitions used for learning at each time step. If the system were truly a linear
time-varying discrete time system with no coupling between subsystems in the input
and output matrices, one would prefer to average the set of numbers obtained from
(10) for this time step, rather than use the latest value, in order to average the
effects of noise in the data. However, noise may not be the issue. Other
considerations suggest using the latest value. In the process of discretizing the
linearized differential equations, coupling ‘was introduced between the subsystems,
which for small sample times is small but not zero. Also, the actual system is
nonlinear, and the linearized differential equation model considered here to model the
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system Is linearized about the desired trajectory. Hence, it is only as the system

approaches the desired trajectory that the estimate of the C,(k+1)B;(k) product

approaches the true value.

Figure 3 presents results of learning in the same linearized polar coordinate model as
above, with the same 'sample time. The first repetition is with feedback control only,
and then the wave of learning starts, using two repetitions for each time step. After
the wave finishes the final time step at repetition 21, a second wave of learning is
The computations use noise free data
Due to the effects mentioned

performed for repetitions 22 through 41.
computed from the time varying difference equation.
above, the error at the end of the first wave is not zero, although the error is much
improved over feedback alone. During the second wave, the error behind the wave is
made very small, although the error in front of the wave is somewhat accentuated
temporarily during the learning process. Figure 4 shows the corresponding results
when four repetitions are used at each time step, and only one wave of learning is
used, for the same total of 41 repetitions. During repetitions 1 through 21 in Fig. 3,
one has somewhat better and more uniform error histories than in Fig. 4, but during
the second wave of learning for repetitions 22 through 41 in Fig. 3 the errors do not
decay monotonically and can be worse than in Fig. 4. So, the double wave of
learning with two repetitions per time step has better initial behavior, but one pays

some price later with worse transient behavior after the transients have decayed

significantly.
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Fig. 3  Error histories for learning in a wave in the linearized polar

coordinate model, progressing one time step every two repetitions, and

performing two waves of learning.
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Fig. 4  Error histories for learning in a wave, progressing one time
step every four repetitions, and performing one wave of learning.

The concept of learning in a wave was first introduced in Ref. [15] for centralized
linear learning control as a method to improve the learning control transients. It was
introduced here for a different reason, as a way to decouple the subsystems when the
subsystems are learning simultaneously. It may have advantages in producing better
transients as well. This. may be true when one has only poor a priori knowledge of
the system, but the fact that the learning transients are better in Figs. 2 than in 3
indicates that when one knows the P, matrices to within 10%, there is no need to
learn in a wave fof purposes of improving transients.

All of the above results used the time varying linearized difference equations for
horizontal motion of the polar coordinate robot model. Figures 5 and 6 apply
decentralized learning control to the nonlinear differential equation model in order to
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Fig. 5 Error histories for one wave of learning in the nonlinear polar
robot model, using four repetitions for learning at each time step, with
sample time T=0.1 sec.
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Fig. 6 Error histories for one wave of learning in the nonlinear polar
robot model, using two repetitions for learning at each time step, with
sample time T=0.05 sec.

see the effects of nonlinearities. Figure 5 repeats Fig. 4 for these nonlinear differential
equations, l.e. it uses learning in a wave with four repetitions for each time step,
before letting the wave progress a time step. As before, the wave of learning is
complete after 41 repetitions. The error histories are similar to those for the linearized
time varying model in Fig. 4, although for subsystem 2 the results are somewhat
worse throughout for repetition 5, and somewhat worse at the end in repetition 11. In
the nonlinear case, the multiple repetitions for each time step try to correct for not
only the coupling in the input matrices introduced in the-time discretization, but also
for system nonlinearities. Figure 6 cuts the sample time in half to 0.05 seconds, which
decreases both the coupling in the input matrices and the influence of nonlinearities
during "one time step. The number of repetitions per time step is decreased to two,
so that the wave of learning is again finished at the end of 41 repetitions. Thus, we
study the trade-off between decreasing these coupling effects by decreasing the
number of time steps, versus decreasing these coupling effects by repeated repetitions
at the same time step. Comparing Figs. 5 and 6, does not give a clear indication of
which approach is best. For subsystem 2, using the smaller sample time results in a
substantial improvement in performance at repetition 5, but a somewhat worse error in

repetition 11.
V. CONCLUDING REMARKS

In this paper, two classes of methods were developed for decentralized indirect
learning control based on different agreements between the subsystems as to when
each subsystem learns. In the first, the subsystems agree to alternate the learning of
the complete trajectory with the repetitions. The second algorithm has the appeal of
learning in a wave progressing from the start of the p-step process and progressing
to the end, with all subsystems learning simuitaneously the same time step. Fewer
parameters need to be identified when learmning in a wave than in the alternate
and this distinction in the case of

In [15], learning in a wave similar to this was used with the

learning approach, is even more extreme

time-invariant systems.
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integral control based leaming control. as one technique to have control over the size
ol the transients in the learning process.  Numerical results not presented here
indicate that learning in a wave is preferable to the alternate learning method when
one has verv.poor a priori knowledge of the system, but the reverse is true if one
has a reasonable svstem model. Examples also illustrate the trade-offs between how
many repetitions are used for each time step when learning in a wave, how many
waves of learning to use, and how small a sample time to use.
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