• 제목/요약/키워드: trajectory planning

검색결과 314건 처리시간 0.04초

최소시간을 고려한 다관절 로봇의 궤적계획 (Trajectory Planning of Articulated Robots with Minimum-Time Criterion)

  • 최진섭;양성모;강희용
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.122-127
    • /
    • 1996
  • The achievement of the optimal condition for the task of an industrial articulated robot used in many fields is an important problem to improve productivity. In this paper, a minimum-time trajectory for an articulated robot along the specified path is studied and simulated with a proper example. A general dynamic model of manipulator is represented as a function of path distance. Using this model, the velocity is produced as fast as possible at each point along the path. This minimum-time trajectory planning module together with the existing collision-free path planning modules is utilized to design the optimal path planning of robot in cases where obstacles present.

  • PDF

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

신경망과 진화 알고리즘을 이용한 로봇 매니퓰레이터의 궤적 제어에 관한 연구 (A Study on Trajectory Control of Robot Manipulator using Neural Network and Evolutionary Algorithm)

  • 김해진;임정은;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1960-1961
    • /
    • 2006
  • In this paper, The trajectory control of robot manipulator is proposed. It divides by trajectory planning and tracking control. A trajectory planning and tracking control of robot manipulator is used to the neural network and evolutionary algorithm. The trajectory planning provides not only the optimal trajectory for a given cost function through evolutionary algorithm but also the configurations of the robot manipulator along the trajectory by considering the robot dynamics. The computed torque method (C.T.M) using the model of the robot manipulators is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. The Radial Basis Function Networks(RBFN) is used not to learn the inverse dynamic model but to compensate the uncertainties of robot manipulator. The computer simulations show the effectiveness of the proposed method.

  • PDF

계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획 (Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure)

  • 경계현;고명삼;이범희
    • 대한전기학회논문지
    • /
    • 제39권10호
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

Accuracy Analysis of Optimal Trajectory Planning Methods Based on Function Approximation for a Four-DOF Biped Walking Model

  • Peng Chunye;ONO Kyosuke
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.452-460
    • /
    • 2005
  • Based on an introduced optimal trajectory planning method, this paper mainly deals with the accuracy analysis during the function approximation process of the optimal trajectory planning method. The basis functions are composed of Hermit polynomials and Fourier series to improve the approximation accuracy. Since the approximation accuracy is affected by the given orders of each basis function, the accuracy of the optimal solution is examined by changing the combinations of the orders of Hermit polynomials and Fourier series as the approximation basis functions. As a result, it is found that the proper approximation basis functions are the $5^{th}$ order Hermit polynomials and the $7^{th}-10^{th}$ order of Fourier series.

2-관성 공진계의 진동 억제를 위한 기준 입력 궤적에 관한 연구 (Study on Reference Trajectory Planning for Vibration Suppression of 2-Mass System)

  • 권혁성;이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.123-126
    • /
    • 2003
  • This paper presents an speed reference trajectory planning methods for vibration suppression in a t-mass resonant system which has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. The steady state conditions are utilized to derive desired load speed trajectory which does not cause the torsional vibration. And the desired motor speed trajectory is synthesized base on the relation between load and motor speed. The simulation and experiment result suggest that the proposed method effectively suppress the vibration.

  • PDF

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.

룰드서피스 듀얼곡률이론을 이용한 로봇경로계획 (A Robot Trajectory Planning based on the Dual Curvature Theory of a Ruled Surface)

  • 박상민;송문상;김재희;유범상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.482-487
    • /
    • 2002
  • This paper presents a robot trajectory generation method based on the dual curvature theory of ruled surfaces. Robot trajectory can be represented as a ruled surface generated by the TCP(Tool Center Point) and my unit vector among the tool frame. Dual curvature theory of ruled surfaces provides the robot control algorithm with the motion property parameters. With the differential properties of the ruled surface, the linear and angular motion properties of the robot end effector can be utilized in the robot trajectory planning.

  • PDF

이족보행로봇 IWR의 궤적생성에 관한 연구 (A Study on the Trajectory Planning of Biped Walking Robot IWR)

  • 최영하;최상호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2345-2347
    • /
    • 1998
  • This paper deals with the trajectory planning of IWR biped robot using genetic algorithm. The trajectory of a swing leg is generated by 5th order polynomial equation. Velocities and Acceleration properties on a viapoints are needed. These constants are given by heuristic method. The optimal values are determined by G.A to minimize the jerk of a trajectory. As a result, trajectory planning is implemented not on between two viapoints but on a whole interval. Efficient numerical calculation routines and walking algorithms for simulation are accomplished by MATLAB package.

  • PDF

이동물체 포획을 위한 최적 경로 계획 (Optimal Trajectory Planning for Capturing a Mobile Object)

  • 황철호;이상헌;조방현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.