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Based on an introduced optimal trajectory planning method, this paper mainly deals with the

accuracy analysis during the function approximation process of the optimal trajectory planning

method. The basis functions are composed of Hermit polynomials and Fourier series to improve

the approximation accuracy. Since the approximation accuracy is affected by the given orders of

each basis function, the accuracy of the optimal solution is examined by changing the

combinations of the orders of Hermit polynomials and Fourier series as the approximation basis

functions. As a result, it is found that the proper approximation basis functions are the 5*" order

Hermit polynomials and the 7-10"™ order of Fourier series.
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1. Introduction

Recently, a growing community of researchers
is working towards a better understanding of
human walking locomotion, and many biped
walking humanoid robots have been developed.
Among them, some representative ones are P2, P3
and ASIMO constructed by HONDA (Hirose et
al,, 2001), WABIN built by Waseda University
(Yamaguchi et al.,1999), H6 and H7 by Tokyo
University (Nishiwaki et al., 2000), HRP-1 and
HRP-2 by National Institute of Advanced In-
dustrial Science and Technology (Kaneko et
al., 2002), JOHNNIE by Technical University of
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Munich (Gienger et al., 2001), and SDR-3X by
SONY (Kuroki et al., 2001). However, com-
paring with human walking, most of these robots
have a problem in common : they consume great
amount of energy because of lacking energy-
efficient walking gaits.

Besides robots, energy-efficient walking gaits
are also meaningful for developing prosthetics
and artificial walking. It has been measured that
lower limb amputee consumes about two times of
metabolic energy larger than that of non-amputee
(Jessica and James, 1993). Clearly, those with a
lower limb amputation suffer a severe handicap.
Therefore, powered prosthetics combined with
energy-efficient walking gaits should be develo-
ped to reduce the metabolic cost of locomotion
and thus help the amputees walk better. For the
case of artificial walking, without energy-efficient
walking gaits, the metabolic energy needed by the
paraplegic to ambulate with a synthetic gait is
still too high to make it a practical alternative to
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the wheelchair now.

Experimental studies of human locomotion
also support the hypothesis that the choice of
human gait is influenced by energy consideration.
In our previous paper (Peng and Ono, 2003), we
calculated the energy-optimal walking gaits for a
4-DOF planar biped model with flexed knee at
foot exchange by using a proposed trajectory
planning method based on function approxima-
tion method. The selected basis functions of the
trajectory planning method are composed of Her-
mit polynomials and Fourier series to improve
the approximation accuracy. We calculated the
optimal walking gaits for the biped model under
both full-actuated and under-actuated condi-
tions, and the obtained energy-optimal walking
gaits seem natural and closely like that of human
walking. Also, the validity of the gait generating
method had been confirmed by forward dynamics
simulation.

During the analyzing process, we found that the
approximation accuracy is definitely affected by
the given orders of selected basis functions-Her-
mit polynomials and Fourier series. Therefore, it
is interesting to examine the effects of combina-
tions of different orders of Hermit polynomials
and Fourier series as approximation basis func-
tion on approximation accuracy.

In this paper, by combining different orders
of Hermit polynomials and Fourier series as the
approximation basis function in the proposed
trajectory planning method, we calculated the
energy-efficient walking gaits for the biped mo-
del. Then, these generated walking gaits are veri-
fied by forward dynamics simulation and some of
them are judged false. After then, the approxima-
tion accuracy of these results are evaluated by the
error of the forward dynamic motion from the
gait solution and the smoothness of the joint
torque. Subsequently, by summing up the above
analysis, the best approximation basis function is
concluded.

2. Biped Walking Model
and Its Dynamic Equations

In this study, we modeled the planar biped

Fig. 1 Planar 4-DOF biped model

walking mechanism as a 4-DOF links system as
shown in Figure 1. Here we disregarded the upper
body because it has little effect on walking gaits
(Ono and Liu, 2002). The two legs are assumed
to be directly connected to each other through an
actuator at the hip joint. Also, we assumed that
the knee and ankle joints have actuators. The
ankle of the stance leg is modeled as a rotating
joint fixed to the ground, while the small feet of
both legs are neglected.

Biped walking is a periodic phenomenon. A
complete step cycle in human walking can be
divided into two phases: single-support phase
and double-support phase. During the single-
support phase, one foot swings from the rear to
the front while the other foot keeps stationary on
the ground. During the double-support phase,
both feet keep contact with the ground. However,
if we neglect the foot length, we have to assume
the period of the double-support phase to be zero.
Figure 2 shows the analytical model of one step
walking locomotion. In this study the single-
support phase (posture 1- posture 2) is treated
in only one time period, and the time interval of
this phase is denoted by 7. The double-support
phase is assumed to be instantaneous: the foot
exchange takes place instantly (posture 2- posture
3) once the swing leg touches the ground. Thus 7°
is the whole step period. From posture 3, the next
swing phase begins. This cyclic pattern of walking
movements is repeated over and over, step after
step, with a reasonable assumption that successive



454 Chunye Peng and Kyosuke ONO

Walking Direction ——>

NG
ST NS

T ;

Foot exchange

Fig. 2 Postures of biped model during one step
walking

steps are all the same.
The equation of motion of the biped model can
be written as follows :

(M1{8}+[CH I+ [KI{6}={u} (1)

where, [M], [C], and { K } are calculated by the
parameter values of the biped model and the
angular positions of the links, and {u} is the
input torque vector.

We assumed that at the instant of foot exchan-
ge the collision between the swing leg and the
ground is perfectly inelastic without any slippage.
By using the impulse-momentum equations for
translation and rotation, the relationship of the
link angular speeds between right before and right
after the collision can be obtained as follows :

[H]{67}=(Z]{6") @

where, [H], and [Z] are calculated by the
parameter values of the biped model and the
angular positions of the links.

From posture 3, the next swing phase begins.
With the assumption that the successive step is
the same as the current step, the motion state
variables of posture 3 must be the same as those
of Posture 1. This can be expressed as:

03 = g

0‘P3= a’pl (3)

By plugging Eq. (3) back into Eq. (2), the angu-
lar velocities of posture 2 can be expressed by
those of posture | as follows:

{0y*=[H]'[Z]{6}" (4)

In addition, from Fig. 2 and Eq.(3), the relation-
ship of angular positions between posture 2 and
posture 1 can be calculated as follows :

6”=0"+rx (s)

Equations (4) and (5) are the cyclic constraint
conditions of walking motion and can be re-
written in the general form :

co(0%, %, 6%, 6" =0 (6)

3. Optimal Trajectory
Planning Method

In this study, the single-support phase of
walking locomotion is solved by optimal trajec-
tory planning method. In order to obtain a natu-
ral walking locomotion with the lowest possible
input torque, the performance index J here is
defined as the sum of the integration of the square
input torque at all joints during one step period :

7=3 [T ar (7)

Rearranging Eq. (1), #; can be expressed as a
function of the trajectory variables :

u:=I:(8, 8, 6) (i=1~4) (8)

By using the function approximation method, the
joint angle trajectory can be approximated by
a linear combination of the basis function as
follows :

O(p, t)=h"(t)p 9)

where h(t#) is the basis function vector, and p is
the coefficient vector to be optimized.

In this study, to improve the approximation
accuracy, Hermite polynomials and Fourier series
are grouped together as the basis functions (Peng
and Ono, 2003). Hermit polynomials that can
easily specify the initial and terminal conditions
of the trajectory are used to represent the non-
cyclic components and act as 4 coarse approxi-
mation. Fourier series can efficiently approximate
the periodical components and act as precise
approximation. Thus, the approximation accura-
cy is improved. Then the trajectory of the ;™ joint
is of the following form :
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nh nf
8:(p, 1) =lz=:1hhi,,(f>Pihj+iz=:1hfi,(t)bi,j

6;(0)
=(hm(t), hi(t), ) | 6;(0) (10)

nf nf
+ .Eocos(ifcwt) Ci i + ,lein(ifswt) Si
irs=

Foed
where, nh is the orders of Hermit polynomials
and »f is the orders of Fourier series.
Substituting Egs. (8) and (9) back into Eq.
(7), we will get a performance index [ related to
p:
J=J ) (11)

If the biped model walks with unactuated joints
and joint ; is a passive one, the following dyna-
mic constraint should be added to the constraint
conditions : in the basis function space, the pro-
jection of the joint torque z;(p, t) onto the basis
axes should be zero (Ono and Liu, 2002):

ca(p) =f07uj(p, £) h(t)dt=0 (12)

The most generic optimal walking gait will be
obtained by solving the coefficient vector p by
using the minimizing condition of J in Eq.(11)
under the constraint Eqs.(6) and (12). However,
it was found difficult to solve this problem within
a reasonable computing time. By examining the
classification of the locomotion variables into the
unknown variables and given variables in optimi-
zation calculation, we found that the computing
time can be remarkably reduced if the boun-
dary posture 1 and 3 are given. In addition, if the
other variables are determined from the J mini-
mum condition, the sufficient foot clearance (the
maximum elevation of the swing foot above the
ground) of the swing leg can not be assured.
Instead, we found that the foot clearance can be
directly tuned by changing the beginning boun-
dary velocities of the swing leg, 0% and 6%
Therefore, in this study, the values of the begin-
ning boundary displacements ' are given. Then
the end boundary displacements §%% are also de-
termined from Eq.(6). The velocities of the swing
leg %' and 6% are properly adjusted outside of
the optimization routine so as to give desired foot
clearance of the swing leg.

Because the values of @%!, @”* and 45!, %'
are all given before optimization, they should
be taken out from the optimizing parameter set
and the boundary constraints. Thus the remained
optimizing parameter vector and boundary con-
straints are of following forms:

a={00, df% 67, %7, B, 09 69 ol )T (13)

Dynamics constraint Eq. (12) and boundary con-
dition Eq. (6) are put together to the following
equation :

e(@) =419 )=0 (14)

Cb(Q)

Thus this trajectory planning problem is trans-
formed from the calculus of variation subject to
the differential equation constraints into a para-
meter optimization problem for the basis function
coefficients, that is, to find proper q value in Eq.
(13) which minimize the objective function J in
Eq. (11) in a system described by Eq. (1), and
subject to the constraint conditions of Eq. (14).

Since Eq. (14) is nonlinear with respect to g,
it is solved by Newton-Raphson iteration method
in the following form :

90;_;10<qk+1_qk>=—c<q> (15)

In Eq.(15), the number of optimizing variables
(which is 102) is larger than that of constraint
equations (four for full-actuated condition or 31
for under-actuated condition). Therefore, a solu-
tion that satisfies the constraints has redundant
freedom for optimization. This optimization pro-
blem is solved by Singular Value Decomposition
(SVD) method and line search method as intro-
duced in our previous paper (Peng and Ono,
2003).

4. Results and Discussions

4.1 Full-actuated case

Using the trajectory planning method stated
above, we calculated the optimal trajectories for
the biped model that has the same limb para-
meters as those of human beings as shown in
Table 1.
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Table 1 Link parameter values

Parameters 1%t link {27 link |37 link|4™ link
Length /; [m] 045 | 045 | 045 | 045
Mass »2: [kg] 4.0 3.0 3.0 4.0
Center of mass |5 | 415 | 015 | 02

a; im]
Moment of inertia
0.067 | 0.135 | 0.135 | 0.067
I; Tkgm?)
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Fig. 3 Trajectory planned walking gait
(Full-actuated, Hermit=>3, Fourier=10)
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Fig. 4 Joint angle trajectories (Full-actuated, Opti-
mized solution and Forward simulation,

Hermit=35, Fourier=10)

First, we performed the trajectory optimization
for the biped model when all joints are actuated
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Fig. 5 Calculated joint torque
(Full-actuated, Hermit=S5, Fourier=10)

and used the 5% order Hermit polynomials and
10" order Fourier series as the basis functions.
Figure 3 shows the stick figure of the trajec-
tory-planned walking gait. The optimized trajec-
tories of the joint angles are shown in Fig. 4 by
black symbols. And Fig. 5 shows the calculated
joint torque.

Adopting the calculated joint torque shown
in Fig. 5 as the feed-forward input torque, a
forward dynamic simulation has also been done
to check the validity of this trajectory planning
method. The simulated trajectories of the joint
angles are shown in Fig. 4 by white symbols. It
is clear that they are almost the same as those
trajectory-planned ones (black ones).

Next, to examine the effect of the chosen order
of each basis function on approximation accura-
cy, we first fixed the order of Fourier series to 10,
and calculated the optimal trajectories for the
biped model by changing the order of Hermit
polynomials from 3 to 11. The terminal joint
angle errors (at the end of one period) between
the optimized trajectories and the forward simu-
lated ones are shown in Fig. 6.

From Fig. 6, we can see that excepts the order
of Hermit polynomials less than 5, which means
lacking of enough approximation accuracy, we
can get accurate solutions for all the other cases.
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Fig. 6 Terminal simulation errors
(Full-actuated, Fourier=10)
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Fig. 7 Terminal simulation errors
(Full-actuated, Hermit=35)

Similarly, by fixing the order of Hermit poly-
nomials to 5, we calculated the optimal solutions
by changing the order of Fourier series from 5 to
15. The terminal error of each case is shown in
Fig. 7. ‘

As seen in Fig. 7, when lacking of enough ap-
proximation accuracy (Fourier<5), the terminal
errors are quite large as can be expected. But,
when the order of Fourier series being larger than
12, the terminal error of the first link becomes
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Fig. 8 Trajectory planned walking gait
(ul1=0, Hermit=5, Fourier=10)

large again. The reason of this phenomenon will
be explained later.

4.2 Under-actuated case (ul1=0)

Because it seems that the stance ankle of human
being is not easy to produce the input torque,
particularly at the beginning of the stance phase,
we also calculated the optimal trajectories for the
biped model walking with a passive stance ankle
(2,=0). In the calculation, we also used the 5
order Hermit polynomials and the 10™ order
Fourier series as the basis functions. Figure 8
shows the stick figure of the trajectory-planned
walking gait. And the optimized trajectories of
the joint angles are shown in Fig. 9 by black
symbols. Fig. 10 shows the optimized joint torque
solutions. Note that # g; is almost zero in the
entire range of time.

Similar to the full-actuated case, a forward
dynamic simulation has also been done, and the
simulated trajectories of the joint angles are
shown in Fig. 9 by white symbols. In the forward
dynamic simulation, #%;=0 is used for forward
dynamic calculation instead of the solution
shown in Fig. 10. As we can see, they are also the
same as the trajectory planned ones (black ones).

Next, as the same as the full-actuated case, we
first fixed the order of Fourier series to 10, and
calculated the optimal trajectories for the biped
model by changing the order of Hermit poly-
nomials from 3 to 11. The terminal joint angle
errors between the optimized trajectories and the
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solution and Forward simulation, Hermit=>5,

Fourier=10)
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Fig. 10 Calculated joint torque
(ul1=0, Hermit=35, Fourier=10)

forward-simulated ones are shown in Fig. 11.
Different from Fig. 6, we can see in Fig.11 that
excepts the order of Hermit polynomials equals to
5, we can not get accurate solutions for the other
cases.

Similarly, by fixing the order of Hermit poly-
nomials to 5, we calculated the optimal trajec-
tories by changing the order of Fourier series
from 5 to 15. And the terminal error of each case
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Fig. 11 Terminal simulation errors
(ul=0, Fourier=10)
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Fig. 12 Terminal simulation errors

(ul=0, Hermit=5)

is shown in Fig. 12. From Fig. 12, we found that
when lacking of enough approximation accuracy
{Fourier<7), the terminal errors are quite large.
Also, when the order of Fourier series is larger
than 10, the terminal errors become large again.

4.3 Discussion

From Figs. 6,7, 11 and 12, we found that there
exists a common phenomenon: To get good ap-
proximation accuracy, the orders of the two basis
functions must be set within a proper region—
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neither too small nor too large. This phenomenon
conflicts with the usual thought that the higher
the order of the approximation function is set,
the higher the approximation accuracy could be
got.

To find the reason of the above phenomenon,
we analyzed the Singular Value Decomposition
(SVD) method used in solving Eq. (15). SVD
method is a very powerful set of techniques for
dealing with sets of equations or matrices that are
either singular or else numerically very close to
singular. It is based on the following theorem of
linear algebra: Any M XN matrix A can be
written as the product of an M XN column-
orthogonal matrix U/, an N XN diagonal matrix
W with positive or zero elements (the singular
values), and the transpose of an N XN ortho-
gonal matrix V. The various shapes of these
matrices will be made clearly by the following
form :

U
we (VT (16)

WnN

When using SVD method to solve the simulta-
neous equations like A-x=2¥, a particular solu-
tion-set can be simply calculated by :

x=V-[diag(1/w;)]- (U b) (17)

note that if w;=0, 1/w; is replaced by zero before
calculation.

But SVD method can not be applied blindly.
de(qr)
oq
to A, (gas1—qr) corresponds to x, and —e¢(qy)
corresponds to b. When the order of the basis

For our cases, in Eq. (15), corresponds

function is set larger than required, the number of
optimizing variables and the dimension of matrix
A increase accordingly. This unavoidably brings
in some very small but nonzero singular values
(w,’s) to matrix W. That is, the matrix A is ill-
conditioned. In this case, because of the round-
off errors during inverse calculation, we may get
a very large residual |A:x—b|

A method for solving this problem is that : the
solution vector x obtained by zeroing the small

0.20 —
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Fig. 13 Terminal simulation errors
(ul=0, Fourier=10, Zeroing solution)

w;’s will be better (in the sense of the residual
| A-x— b]| being smaller) than the SVD solution
where the small w;,’s are left nonzero (William et
al., 1992).

By using the above “zeroing” method, we re-
calculated the optimal trajectories for the cases of
the orders of Hermit polynomials larger than 5 in
Fig. 11. The new-calculated terminal joint angle
errors of these cases together with the errors of the
case of Hermit polynomials=5 (the same as those
in Fig. 11 because there has no small w;’s needed
for “zeroing”) are shown in Fig. 13. Note that
ordinate is illustrated in linear scale that different
from the case in Fig. 11.

Comparing Fig. 13 with Fig. 11, we found
that the approximation accuracy is improved to
a certain extent. However, it is still not good
enough because of the irremovable residual
| A x— b|. The reason is that the “zeroing” meth-
od is actually another kind of round-off opera-
tion, it brought some small errors into the resi-
dual | A+x— b| when avoiding the larger ones.

The above results indicate that, the 5 order of
Hermit polynomials combined with the 7~ 10*
order of Fourier series as approximation basis
functions has an enough approximation accuracy
for this trajectory planning problem. Higher or-
ders of approximation basis functions (Hermit>
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5 or Fourier >10) are not efficient to approximate
the constraint conditions better.

5. Conclusion

Summing up the above analysis, we can make
a conclusion that the approximation accuracy of
this optimal trajectory planning method is de-
finitely affected by the given orders of each basis
function (Hermit polynomials and Fourier se-
ries). For full-actuated case, the combinations of
over the 5 order of Hermit polynomials and the
5% ~12"™ order of Fourier series has good ap-
proximation accuracy. As to the under-actuated
(21=0) case, the combinations of exactly 5™
order of Hermit polynomials and 7~ 10" order
of Fourier series has good approximation accura-
cy.

For both the above two cases, lower orders of
basis functions lead to larger approximation error
because of lacking enough approximation accu-
racy. On the other hand, higher orders of basis
functions may also result in larger approxima-
tion error due to the introduced small but non-
zero singular values (w;’s). Although it can be
mended to a certain extent by using the “zeroing”
method, the approximation accuracy is still not
improved.
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