• Title/Summary/Keyword: traction law

Search Result 61, Processing Time 0.025 seconds

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Analysis of Incipient Sliding Contact with Orthotropic Friction Condition Subjected to Tangential Load and Twisting Moment (접선하중과 비틀림모멘트를 받는 직교이방성 마찰조건의 정지미끄럼접촉 해석)

  • 이성철;곽병만;권오관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2026-2038
    • /
    • 1994
  • A numerical scheme is developed for the analysis of incipient sliding contact with orthotropic friction condition subjected to tangential load and twisting moment. The inherent nonlinearity in the orthotropic friction law has been treated by a polyhedral friction law. Then, a three-dimensional linear complementarity problem(LCP) formulation in an incremental form is obtained, and the existence of a solution is investigated. A Lemke's complementary pivoting algorithm is used for solving the LCP. The scheme is illustrated by spherical contact problems, and the effects of eccentricity of elliptical friction domain on the traction and stick region are discussed.

A Study on the Optimal Design for DC traction system of Light Rail Transit (경전철 급전시스템의 최적설계에 관한 연구)

  • Jeon, Yong-Joo;Cho, Sung-Joon;Baek, Byung-San;Kim, Kuk-Jin;Kim, Jong-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1251-1253
    • /
    • 2001
  • This paper presents on capacity design of DC-fed-traction system. The system is introduced including a characteristics of train, feeding network configuration, and design method of substation arrangements. Optimal design procedures is described, and program for capacity computation of the system is presented using the nodal equation, K.C.L, K.V.L, Ohm's law and superposition theory. For the proof of the proposed algorithm, we accomplished the simulation of DC traction system for HA-Nam LRT. By considering whole component in DC traction system the conclusion will be much precise.

  • PDF

The design of the traction power supply for the test line of Light Rail Vehicle (경전철 시험선용 전력공급시스템 설계)

  • 김국진;백병산;전용주;정상기;김남규
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF

Vehicle Traction Control System using Fuzzy Logic Theory (퍼지논리를 이용한 차량 구동력 제어 시스템)

  • 서영덕;여문수;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

A Study of Test and Evaluation of Traction Performance for High-speed Train (고속열차 추진성능 시험평가)

  • Lee, Tae-Hyung;Han, In-Soo;Park, Chan-Kyung;Jo, Hong-Sik;Park, Choon-Soo;Sohn, Kyung-So
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1835-1840
    • /
    • 2010
  • The rolling stock have to be tested and evaluated on test line before entry into service. The test items consist of traction performance, braking performance and current collection performance, etc. This paper is a study of defining the test items considering the domestic safety law, IEC 61133 and describes how to establish a test measurement system. Also this paper presents how to conduct the traction performance test and test results.

  • PDF

Modeling for Traction system of the Vehicle including Running Characteristics (주행특성을 고려한 차량 견인시스템 모델링)

  • Byun, Yeun-Sub;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1955-1961
    • /
    • 2007
  • In this paper, we propose the mathematical model for the vehicle system including running characteristics. The well defined model for a system is necessary to study and to enhance system performance. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. To test the driving characteristics of the developed model, we performed the simulations by dynamic system simulation software, "SIMULINK" and the results are given for several conditions.

Adhesion Estimation and Modeling on Traction Characteristic of Vehicle (차량 견인특성모델링 및 점착력 추정)

  • Byun, Yeun-Sub;Kim, Min-Soo;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1765_1766
    • /
    • 2009
  • In this paper, we propose the mathematical model for the vehicle system and the observer for adhesion force. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. From two equations, we get the observer on adhesion force. Simulation results show that the proposed observer have the good performance compared with the normal observer.

  • PDF

Experimental Setup for Dynamic Analysis and Verification of Model Trains (모형기차의 동역학 해석 검증을 위한 실험장치 구성)

  • Tak, Tae-Oh;Kim, Suc-Tae
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.95-103
    • /
    • 2000
  • A model trains must have similitude with its original model not only in shape but also in motion. Motion characteristics of a model train under considerations are maximum velocity in straight and circular tracks and stopping distance. Equations of motions are derived to obtain maximum speed and stopping distance based on the Newton's Second Law and the energy principal. To accurately predict traction and resistance force between wheel and rail. wheel slip, or creepage, is taken into consideration. To verify the equations of motion, various experiments have been carried out including measurement of gear efficiency, location of mass center, rolling resistance force, traction force, slip, maximum velocity and stopping distance. This paper addresses how the experiments are setup and carried out in detail. Also the results of experiments are compared with the analytical prediction, which showed good agreements with each other.

  • PDF