1 |
Abraham, F.F. and Broughton, J.Q. (1998), "Large-scale simulations of brittle and ductile failure in fcc crystals", Comput. Mater. Sci., 10, 1-9.
DOI
|
2 |
Amarillas, A.P. and Garzon, I.L. (1996), "Microstructural analysis of simulated liquid and amorphous Ni", Phys. Rev. B, 53, 8363.
DOI
|
3 |
Bhatia, M.A., Solanki, K.N., Moitra, A. and Tschopp, M.A. (2011), "The effect of crystallographic orientation on void growth: A molecular dynamics study", Min. Metal. Mat. Soc. ASM Int., 44A, 617-626.
|
4 |
Bringa, E.M., Traiviratana, S. and Meyers, M.A. (2010), "Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects", Acta Materialia, 58, 4458-4477.
DOI
|
5 |
Clarke, A.S. and Jonsson, H. (1993), "Structural changes accompanying densification of random hard-sphere packings", Phys. Rev. E, 47, 3975.
|
6 |
Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R. and Kilic, H. (2007), "Cohesive modeling of delamination in Z-pin reinforced composite laminates", Comp. Sci. Tech., 67(3-4), 616-631.
DOI
|
7 |
Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29, 6443-6453.
DOI
|
8 |
Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-104.
DOI
|
9 |
Faken, D. and Jonsson, H. (1994), "Systematic analysis of local atomic structure combined with 3D computer graphics", Comput. Mater. Sci., 2, 279-586.
DOI
|
10 |
Ganesh, P. and Widom, M. (2006), "Signature of nearly icosahedral structures in liquid and supercooled liquid copper", Phys. Rev. B, 74, 134205.
DOI
|
11 |
Garrison, W.M. Jr. and Moody, N.R. (1987), "Ductile fracture", J. Phys. Chem. Solid., 48, 1035-1074.
DOI
|
12 |
Garzon, I.L. and Amarillas, A.P. (1996), "Structural and vibrational analysis of amorphous Au 55 clusters", Phys. Rev. B, 54, 11796.
DOI
|
13 |
Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31, 1695-1697.
DOI
|
14 |
Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Phil. Trans. R. Soc. Lond. A, 221, 163-198.
DOI
|
15 |
Holland, D. and Marder, M. (1999), "Cracks and atoms", Adv. Mater., 10(11), 793-806.
|
16 |
Honeycutt, J.D. and Andersen, H.C. (1987), "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", J. Phys. Chem., 91(19), 4950-4963.
DOI
|
17 |
Horstemeyer, M.F. and Baskes, M.I. (1999), "Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses", ASME Tran. J. Eng. Mater. Tech., 121, 114-119.
DOI
|
18 |
Irwin, G.R. (1948), "Fracture dynamics", Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, OH.
|
19 |
Irwin, G.R. (1956), "Plastic zone near a crack and fracture toughness", Proceedings of the Sagamore Conference on Strength Limitations of Metals, NY Syracuse University Press, 2, 289-305.
|
20 |
Irwin, G.R. (1957), "Analysis of stresses and strain near the end of a crack traversing a plate", Tran. ASME Ser. E: J. Appl. Mech., 24, 361-364.
|
21 |
Jakse, N. and Pasturel, A. (2004), "Ab initio molecular dynamics simulations of local structure of supercooled Ni", J. Chem. Phys., 120(13), 6124-6127.
DOI
|
22 |
Jonsson, H. and Andersen, H.C. (1988), "Icosahedral ordering in the Lennard-Jones liquid and glass", Phys. Rev. Lett., 60, 2295.
DOI
|
23 |
Li, T.X., Yin, S.Y., Ji, Y.L., Wang, B.L., Wang, G.H. and Zhao, J.J. (2000), "A genetic algorithm study on the most stable disordered and ordered configurations of Au 38-55", Phys. Lett. A, 267(5-6), 403-407.
DOI
|
24 |
Krull, H. and Yuan, H. (2011), "Suggestions to the cohesive traction-separation law from atomistic simulations", J. Eng. Fract. Mech., 78, 525-533.
DOI
|
25 |
Kubair, D.V., Geubelle, P.H. (2003), "Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture", Int. J. Solid. Struct., 40, 3853-3868.
DOI
|
26 |
LAMMPS (2013), http://www.cs.sandia.gov/-sjplimp/lammps.html
|
27 |
Liu, X.Y., Ercolessi, F. and Adams, J.B. (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Model. Simul. Mater. Sci. Eng., 12, 665-670.
DOI
|
28 |
McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371.
DOI
|
29 |
Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531.
DOI
|
30 |
Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fract., 42, 21-40.
DOI
|
31 |
Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519.
DOI
|
32 |
Paliwal, B. and Cherkaoui, M. (2013), "An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth", Int. J. Solid. Struct., 50, 3346-3360.
DOI
|
33 |
Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16, 1-12.
DOI
|
34 |
Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19.
DOI
|
35 |
Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J. and Gullett, P.M. (2006), "A molecular dynamics study of void growth and coalescence in single crystal nickel", Int. J. Plast., 22, 257-278.
DOI
|
36 |
Ren, G.W., Tang, T.G. and Li, Q.Z. (2012), "Atomistic study of anisotropic effect on two-dimensional dynamic crack", Front. Mater. Sci., 6(1), 87-96.
DOI
|
37 |
Rosch, F., Trebin, H.R. and Gumbsch, P. (2006), "Fracture of complex metallic alloys: An atomistic study of model systems", Phil Mag., 86, 1015-1020.
DOI
|
38 |
Le Roy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), "A model of ductile fracture based on the nucleation and growth of voids", Acta Metallurgica, 29, 1509-1522.
DOI
|
39 |
Schiotz, J., DiTolla, F.D. and Jacobsen, K.W. (1998b), "Softening of nanocrystalline metals at very small grain sizes", Nature, 391, 561-563.
DOI
|
40 |
Schiotz, J., Vegge, T., DiTolla, F.D. and Jacobsen, K.W. (1999), "Atomic-scale simulations of the mechanical deformation of nanocrystalline metals", Phys. Rev. B, 60, 11971.
DOI
|
41 |
Sorensen, M.R., Brandbyge, M. and Jacobsen, K.W. (1998a), "Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms", Phys. Rev. B, 57, 3283.
DOI
|
42 |
Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Meth. Eng., 61, 1894-1920.
DOI
|
43 |
Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982), "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters", J. Chem. Phys., 76, 637-649.
DOI
|
44 |
Tai, W.H. and Yang, B.X. (1986), "A new microvoid-damage model for ductile fracture", Eng. Fract. Mech., 25, 377-384.
DOI
|
45 |
Thomason, P.F. (1998), "A view on ductile-fracture modelling", Fatig. Fract. Eng. Mater. Struct., 21(9), 1105-1122.
DOI
|
46 |
Tvergaard, V. (2001), "Crack growth predictions by cohesive zone model for ductile fracture", J. Mech. Phys. Solid., 49, 2191-2207.
DOI
|
47 |
Westergaard, H.M. (1939), "Bearing pressures and cracks", J. Appl. Mech., 6, 49-53.
|
48 |
Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", Trans. AMSE J. Appl. Mech., 24, 109-114.
|
49 |
Wu, W. and Yao, Z. (2012), "Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel", J. Theo. Appl. Fract. Mech., 62, 67-75.
DOI
|
50 |
Xu, S. and Deng, X. (2008), "Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal", Nanotechnology, 19, 115705.
DOI
|
51 |
Yavari, A.R., Lewandowski, J.J. and Eckert, J. (2007), "Mechanical properties of bulk metallic glasses", Mrs Bull., 32(08), 635-638.
DOI
|
52 |
Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", J. Eng. Fract. Mech., 75, 3276-3293.
DOI
|
53 |
Yamakov, V., Saether, E., Phillips, D.R. and Glaessgen, E.H. (2006), "Molecular-dynamics simulationbased cohesive zone representation of intergranular fracture processes in aluminum", J. Mech. Phys. Solid., 54, 1899-1928.
DOI
|
54 |
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H. (2002), "Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation", Nature Mater., 1(1), 45-49.
DOI
|
55 |
Zeng, X. and Li, S. (2010), "A multiscale cohesive zone model and simulations of fractures", Comput. Meth. Appl. Mech. Eng., 199, 547-556.
DOI
|
56 |
Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A. and Reedy, E.D. (2009), "Molecular-dynamicsbased cohesive zone law for brittle interfacial fracture under mixed loading conditions: effects of elastic constant mismatch", Acta Materialia, 57(16), 4671-4686.
DOI
|
57 |
Zhou, M. (2003), "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. R. Soc. London A, 459, 2347-2392.
DOI
|
58 |
Zhou, X.W., Zimmerman, J.A., Reedy, E.D. and Moody, N.R. (2008), "Molecular dynamics simulation based cohesive surface representation of mixed mode fracture", Mech. Mater., 40, 832-845.
DOI
|