• Title/Summary/Keyword: total ginsenoside

Search Result 368, Processing Time 0.025 seconds

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Ginsenoside Contents and Hypocholesterolemic Effects of a By-Product in Ginseng Radix (인삼부산물 추출액의 ginsenosides 함량 및 고지방 식이에 있어 혈청 콜레스테롤 농도 개선에 미치는 효과)

  • Sihn, Eon-Hwan;Park, Sung-Jin;Han, Jong-Hyun;Park, Sung-Hye
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.459-465
    • /
    • 2005
  • This study was conducted to investigate the application possibility of leaf and stem extract(LSE) extracted from mixture of leaf and stem of ginseng radix (Panax Ginseng C.A. Meyer). We conducted analysis of the ginsenoside content by HPLC. Also we investigate the effects of the LSE on the reduction of serum lipid and improvement of blood parameters in rats fed high fat diet 5 weeks. We examined by analyzing the serum total cholesterol, HDL-cholesterol, LDL-cholesterol, triglyceride and atherogenic index and hematological datas and serum metabolic variables. Sprague-Dawley rat weigh $150\;g\;{\pm}\;15\;g$, were ramdomly assigned to 4 groups, basal diet only(BDG), high fat diet weithout LSE(FDCG), high fat diet and 10% LSE(FD10G), high fat diet and 20% LSE(FD20G). The result of this study were as follow. Hematological datas of 4 groups were same level, which were not significant. The activities of ALP, GOT and LDH level were significantly different. Total cholesterol, LDL-cholesterol, triglyceride contentrations in serum and atherogenic index were remarkably reduced in LSE supplemented groups as compared high fat control groups. These result imply that LSE could be used as possible for decrease of serum lipid concentration.

Effect of Fermented Red Ginseng Extracts on Physiological Activity and Blood Glucose Level in Streptozotocin Induced Diabetic Rats (홍삼발효 추출물의 생리활성 및 streptozotocin으로 유발된 당뇨쥐의 혈당강하에 미치는 영향)

  • Kim, Hae-Ja;Seo, Myeong-Hyo;Lee, Eun-Kyoung;Cho, Hwa-Eun;Choi, Yun-Hee;Lee, Ki-Nam;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1087-1094
    • /
    • 2009
  • The purpose of this study was investigated hypoglycemic effects of fermented red ginseng extracts. We prepared non-fermented red ginseng extracts(R), fermented with Lactobacillus plantarum(RL) extracts, Saccharomycescerevisiae(RS) extracts, and L. plantarum mixed S. cerevisiae(RLS) extracts, examined composition of ginsenosides, SOD-like activity, and $\alpha$-glucosidase inhibitory activity. Ginsenoside Re was highest contents in all extracts, second was ginsenoside Rc and then ginsenoside Rb1. Concentration of these ginsenoside was showed higher in RS than in other extracts. SOD-like activity and $\alpha$-glucosidase inhibitory activity were shown higher in fermented red ginseng extracts than non fermented extracts. And activities of mixed fermentation extracts(RLS) higher than single fermentation extracts(RL, RS). Effects of blood glucose level, serum lipid profile and metabolic variables were evaluated in streptozotocin(STZ) induced diabetic rat. Experimental group was divided into 7 groups: normal control group(hereafter NC group), diabetes control group(DC group), positive control group treated with 50 mg/kg body weight of acarbose(PC group), treated with 300 mg/kg body weight of R, RL, RS and RLS extracts groups, respectively. Blood glucose level of DC group was maintained high level in all experimental period, but treated with red ginseng extracts groups was reduced the glucose level by R group 18.00%, RL group 28.07%, RS group 29.03%, RLS group 42.42%, respectively. The concentration of total cholesterol and triglyceride of fermented red ginseng extracts treated groups (RL, RS, RLS) was lower than non- fermented extracts group(R) DC and PC groups. The activity of ALT, AST in RLS treated groups were lower than other groups.

Study on White Ginseng Extract Preparation for Cognition Improvement (인지능 개선 효과 증진을 위한 백삼 추출물 조제 연구)

  • Lee, Seung Eun;Kim, Geum Sook;Lee, Dae Young;Kim, Hyung Don;Lee, Jae Won;Lee, Young Sup;Park, Chun Geun;Ahn, Young Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2016
  • Background: The study was conducted to elucidate the extraction conditions under which white ginseng has cognition-improving efficacy. Methods and Results: Extracts from white ginseng under different solvent and temperature conditions were analyzed for ginsenoside content and inhibitory effect on N-methyl-D-aspartate (NMDA) receptor and acetylcholinesterase. The total ginsenoside contents and amounts of ginsenoside Rb1 plus ginsenoside Rg1 from the 1st extracts (prepared with EtOH/$H_2O$ as solvent) were higher than those from the 2nd extracts (extracted with $H_2O$ after the 1st EtOH/$H_2O$ extraction). The contents in the 1st and 2nd extracts produced at $80^{\circ}C$ were also higher than those obtained at $50^{\circ}C$. Samples from the 1st extraction at $80^{\circ}C$ indicated higher inhibitory activities on NMDA receptors-whose excessive activation is thought to mediate the calcium-dependent neurotoxicity associated with several neurodegenerative diseases-than those from the 2nd extraction. Among the samples prepared at varying temperatures, the extract prepared at $50^{\circ}C$ showed the highest suppression activity on NMDA receptors. Note, however, that the extracts from the 2nd extraction at $50^{\circ}C$ inhibited acetylcholinesterase-whose inhibition could be a therapeutic strategy for neurodegenerative diseases with cognitive deficits and memory malfunction-more effectively than those from the 1st extraction. Conclusions: To enhance the cognition-improving activity of white ginseng extract, it is suggested that the extracts be utilized after being combined the 1st extracts (made with EtOH/$H_2O$ solvent) and the 2nd extracts (prepared with $H_2O$) at low temperature.

Ginsenosides Protect the High Glucose-induced Stimulation of IGFs in Mesangial Cells (Mesangial 세포에서 고포도당에 의해 유도되는 insulin-like growth factor 분비 촉진작용에 대한 ginsenosides의 차단 효과)

  • Bae, Chun-Sik;Lim, Do-Seon;Yoon, Byeong-Cheol;Jeong, Moon-Jin;Yoon, Kyung-Chul;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Panax ginseng C. A. MEYER is one of the most widely used herbal medicines in the Asian countries and has diverse functions including anti-diabetic action. The dysfunctions of mesangial cells in hyperglycemic conditions are implicated in the development of diabetic nephropathy. Insulin-like growth factors (IGFs) are also associated with the onset of diabetic nephropathy. Thus, we examined the effect of ginsenosides against high glucose-induced dysfunction of primary cultured rat mesangial cells. In the present study, high glucose increased IGF-I and IGF-II secretion in mesangial cells. Ginsenoside total saponin (GTS) prevented high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. In addition, GTS prevented high glucose-induced increase of lipid peroxide formation and decrease of GSH contents. GTS also ameliorates high glucose-induced increase of arachidonic acid release and decrease of prostaglandin $E_2$. In conclusion, GTS prevented high glucose-induced dysfunction of mesangial cells via inhibition of oxidative stress and arachidonic acid pathways.

Physicochemical Characteristics on Main and Fine root of Ginseng Dried by Various Temperature with Far-Infrared drier (원적외선 건조온도에 따른 백삼의 주근과 세근의 이화학적 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Lee, Hee-Chul;Lee, Young-Gu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • To find up using of more efficient white ginseng, white ginseng was dried on various temperature (70, 80, 90,100, 110, 120, 130 and $140^{\circ}C$) with far-infrared drier and analyzed the composition of ginsenoside, carbohydrate, organic acid content and color. The type of ginseng shape was sliced and dried main and fine root, separately. As heating temperature increased, total ginsenoside content increased on main root, its content was the highest at $130^{\circ}C$, while decreased on fine root. Soluble carbohydrate content was the highest at $70^{\circ}C$ both on main and fine root. Increase of Re, Rc and Rb2 content was increased more high at $130^{\circ}C$, especially. But on fine root, content of Rg1, Rg3, Rf and Rb3 was increased and Re, Rc,Rb1 and Rb2 were decreased by the increased of temperature. As heating temperature increased, lightness of both main and fine root were decreased. Redness and yellowness of both main and fine root was increased to $120^{\circ}C$ and $100^{\circ}C$, respectively and decreased over this temperature.

Changes in the Chemical Components of Red and White Ginseng after Puffing (팽화 가공에 따른 홍삼과 백삼의 성분변화)

  • Kim, Sang-Tae;Jang, Ji-Hyun;Kwon, Joong-Ho;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • In this study, raw ginseng produced by different methods was puffed, and physicochemical properties were analyzed and compared. Raw ginseng included white ginseng lateral root (WGL), red ginseng lateral root (RGL), red ginseng main root (RGM), and red ginseng main root with 15% (w/w) moisture (RGMM). All samples were puffed at a pressure of 7 kg/cm2. Crude saponin content was increased after puffing compared with that of control ginseng. RGM and RGMM showed significant increases in crude saponin content, from 1.67% and 1.41% to 2.84% and 3.09% (all w/w), respectively. However, the ginsenoside content of WGL was decreased after puffing. Rg3, Rh1, and Rh2 values of red ginseng were increased by puffing compared with those of control red ginseng. The total sugar content of ginseng decreased after puffing. The mineral components of puffed ginseng were similar to those of raw ginseng. Levels of total phenolic compounds and antioxidant activities of ginseng were increased after puffing, and electron-donating ability was greatly increased. The acidic polysaccharide content of ginseng increased slightly and the amino acid content decreased due to the high temperature used during puffing.

Change of Ginsenosides and Free Sugars in Seeds During Stratification and Seedling During Early Growth Stage of Panax ginseng (인삼의 종자개갑시와 묘생육초기의 Ginsenosides 및 유리당의 변화)

  • 박귀희;이미경;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.286-292
    • /
    • 1986
  • For the elucidation of saponin synthesis during ontogeny changes of ginsenosides and free sugars in seeds during stratification and seedlings in early growth stage were investigated with high performance liquid chrom-atography. Embryo plus endosperm at 40-day stratification showed 80% decrease of total saponin, disappear-ance of Rc, Rb$_2$ and Rb$_1$ and appearance of Rg$_3$ (probable) and 20-Glc-Rf (probable). Leaf ginsenoside F$_3$ was found not in fruit plup but seed and decreased during stratification. Both decomposition and synthesis of saponin seemed to occure during stratification. Ginsenosides in endosperm and embryo might be originated from fruit pulp by penetration. In seedling saponin appeared first in shoot and in root about one month later. Ginsenoside Rc, Rb$_2$, Rb$_1$ appeared in root at the last investigation (June 30) indicating normal saponin synthetic capacity of root. Saponin synthetic rate was twice in leaf than in root. Leaf ginsenoside F$_3$ was found in seedling root. Root saponin Rg$_3$ and 20-Glc-Rf were found in leaf and stem in seedling and decreased with growth suggesting that rate saponin is not such in certain growth stage. Total saponin content was negatively correlated with PT/PD in seeds and arial parts of seedling due to greater change of PD. than PT. Seed at 70days stratification showed high sucrose content. In seedling glucose was main sugar in stem all the while and sucrose in root at early stage while glucose, fructose and sucrose were found in leaf.

  • PDF

Preparation of Black Panax ginseng Leaf and Evaluation of its Antioxidative Effect (흑인삼엽의 제조 및 항산화 활성 평가)

  • Kim, Sang-Kyum;Kim, Eui-Keom;Lee, Jee-Hyun;Cho, Soo-Hyun;Shen, Gui-Nan;Guo, Jin-Long;Oh, Jung-Min;Myung, Chang-Seon;Oh, Han-Jin;Kim, Dong-Hee;Yun, Mi-Young;Yun, Jae-Don;Roh, Seong-Soo;Park, Yong-Jin;Seo, Young-Bae;Song, Gyu-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.397-402
    • /
    • 2008
  • The purpose of this study is to prepare black Panax ginseng leaf (PGL) and evaluate its antioxidative effect. In order to make black PGL, the raw PGL was successiely steamed at $95^{\circ}C$ for 3 hr nine times. The antioxidant activities of total saponins (Sa) from PGL and black PGL against peroxyl radicals and peroxynitrites were determined by the total oxy-radical scavenging capacity (TOSC) assay. Specific TOSC values for black PGL-Sa against peroxyl radicals and peroxynitrites were 2.3-fold and 2.1-fold of PGL-Sa, respectively, and 2.2-fold and 5.2-fold of glutathione, a positive control antioxidant, respectively. The black PGL-Sa exhibited stronger antioxidative effect than PGL-Sa. The main ginsenosides of black PGL were $Rg_3,\;Rk_1\;and\;Rg_5$. Among the saponins in black PGL, the amount of ginsenoside $Rg_3$ was examined by HPLC. 22.12 mg of ginsenoside $Rg_3$ was obtained from 1g of dried black PGL.