• Title/Summary/Keyword: total ginsenoside

Search Result 368, Processing Time 0.024 seconds

Changes in Contents of Ginsenoside Due to Boiling Process of Panax ginseng C.A. Mayer

  • Sung, In Je;Ghimeray, Amal Kumar;Chang, Kwang Jin;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.726-730
    • /
    • 2013
  • The purpose of the study was to determine a method to use fresh white Korean ginseng in the form of higher intake of medicinal components. Decoction was made at $70^{\circ}C$ and $90^{\circ}C$ in different intervals of time. HPLC (DAD) system was employed to monitor the ginsenosides content in the decoctions and the components were identified by comparing the retention time with that of reference compounds. However, decoction made at $70^{\circ}C$ in 72 hrs possessed higher amount of total ginsenosides ($209.6{\mu}g/mL$) content where considerable amount of bioactive ginsenosides like Rg3, Rb2, Rb1 and Rg1 were accumulated. Overall, it can be concluded that the fresh white Korean ginseng decoction made in 72 hrs at $70^{\circ}C$ would be useful for the health and other medicinal approach of ginseng.

Changes in the Contents of Prosapogenin in the Skin White ginseng(Panax ginseng) Depending on Extracting Batches (피부백삼의 추출 조건에 따른 프로사포게닌 함량 변화)

  • Im, Byung Ok;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.315-319
    • /
    • 2014
  • This study compared the contents of ginseng prosapogenin depending on the extracting conditions of Skin White ginseng(Panax ginseng) to provide basic information for developing Skin White ginseng-based functional foods. Our findings show that the content of crude saponin peaked at 4 hours of extraction(SWG-4) and when extracted at $100^{\circ}C$. However, the content of total saponin reached its height at 8 hours of extraction at $100^{\circ}C$(SWG-8). On the other hand, the content of prosapogenin reached their heights at 60 hours of extraction(SWG-60), followed by 60 hours of extraction at $100^{\circ}C$. And at $100^{\circ}C$ the main prosapogenin of the content of Red and Black ginseng ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$ reached their heights at 60 hours of extraction(SWG-60), followed by 60 hours of extraction.

Effects of Dammarane Glycosides of Panax ginseng on Cholinergic Neurons in Primary Cultured Chicken Embryonic Brain Cells (일차배양한 계배 뇌세포 내의 콜린성 신경에 대한 인삼 Dammarane계 Glycosides의 작용)

  • Kim, So-Ra;Park, Mi-Jung;Huh, Hoon;Lee, Heum-Sook;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.401-409
    • /
    • 1994
  • The cholinergic activity of dammarane glycosides of Panax ginseng was examined both morphologically and chemically on primary cultures of chicken embryonic brain cells. When primary cultured chicken embryonic cells were treated with $50\;{\mu}g/ml$ of total dammarane glycosides of Panax ginseng followed by the exposure to 10mM atropine for 48 hr, lactate dehydrogenase levels within the cells remained at 36% of untreated control values while atropine-treated controls fell to 0% lactate dehydrogenase. It was found that cholinergic activity was mainly exerted by the panaxadiol glycosides. The treatment of the cells with $50\;{\mu}g/ml$ of panaxadiol glycosides followed by the exposure to atropine, lactate dehydrogenase levels within the cells remained at 60% of untreated control values. Ginsenoside $Rb_1$, a component of panaxadiol glycosides, was found to exert the cholinergic activity keeping the lactate dehydrogenase levels within the cells at 70% of untreated control values. The cholinergic activity of ginsenoside $Rb_1$ seems to be exerted through acting on the $Ca^{2+}$ channel in cultured brain cells.

  • PDF

Improved Method for the Preparation of Crude Ginseng Saponin (인삼 조사포닌의 조제 방법 개선)

  • 김시관;곽이성
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 1998
  • This stuffy was carried to establish a new efficient method for the preparation of edible crude ginseng saponin. The conventional butanol extraction and resin adsorption methods were compared for the contents of total crude ginseng saponin and major ginsenosides. Seventy- percent methanol extract was applied to Diaion HP-20 column and the resin was washed with Hn and eluted with absolute methanol. The methanol elute was dried in vivo and analyzed for its ginsenosides. Use of ethanol instead of methanol to make edible crude ginseng saponin gave a similar result. Butanol extraction was performed by the conventional method. The final aqueous layer from butanol extraction was passed through Diaion HP-20 column followed by elution with methanol and Diaion HP-20 passed fraction was extracted with butanol to recover remaining components, respectively, in order to determine saponin loss. TLC and HPLC qualitatively and quantitatively monitored Ginsenosides, respectively. Loss of ginsenosides was higher in butanol extraction method than in Diction HP-20 adsorption method. In addition, saponin fractions prepared by Diction HP-20 adsorption method showed higher content of each ginsenoside, showing 8.2% higher purity than that of butanol extracted fraction. From these results, we propose the resin adsorption method as a new efficient measure for the preparation of crude ginseng saponin, which is edible by using spirit instead of methanol.

  • PDF

Optimization of ginseng hairy roots culture and its ginsenoside analysis

  • Ji, Joong Gu;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.995-1002
    • /
    • 2018
  • Hairy root culture of ginseng is industrially prospected because the cultivation period of ginseng is relatively long. In this study, the effect of medium concentration and sucrose concentration on hairy root culture of ginseng was evaluated. The optimization of ginseng hairy roots transformed by Agrobacterium rhizogene were performed liquid medium. The MS(Murashinge & Skoog basal medium) concentration was selected with 1/2 strength MS and the optimal sucrose concentration was determined at 2-3%(w/v). At the optimum culture condition, The yield (the ratio of weight of grown hairy root cultures to weight of fresh ginseng hairy roots) and production rate of ginseng root were 19.42 times and 5.73 g/l-day. The major ginsenosides were Rb group, Re and Rg1. The produced total ginsenoside content in the solid medium was 9.87 (mg/g) and increased 1.34 times in the liquid medium (13.23 mg/g). In solid culture, the contents of ginsenosides Rb, Re and Rg1 were 2.14, 3.65 and 1.87 mg/g, respectively. In liquid culture, the contents of ginsenosides Rb, Re and Rg1 were 3.54, 4.12 and 2.63 mg/g, respectively.

A Modified Alkaline Hydrolysis of Total Ginsenosides Yielding Genuine Aglycones nad Prosapogenols

  • Im, kwang-Sik;Chang, Eun-Ha;Je, Nam-Gyung
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.454-457
    • /
    • 1995
  • To improve the yield of genuine aglycones from glycosides, the conditions of alkaline hydrolysis were investigated, and a modified method was established. The modified method empolyed pyridine as an aprotic solvent. To complete the hydrolysis and obtain 20(S)-protopanaxadiol (1) and 20(S)-protopanaxatriol(2), which are the genuine aglycones of ginsenosides, total ginsenosides were refluxed with sodium methoxide in pyridine. Addition of methanol, a protic polar solvent to the reaction miuxture, led partial hydrolysis yielding a mixture of the genuine prosapogenols. Of the prosapogenols compound 3 and 6 characteristically possessed D-glucopyranosyl moiety attached at the sterically hindered C-20 hydroxyl group. 3 and 6 were not obtaijned by other hydrolysisw methods except by the soil bacterial hydrolysis.

  • PDF

Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin (Cyclodextrin을 이용한 발효홍삼농축액 최적 포접 조건)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1708-1714
    • /
    • 2015
  • Fermented red ginseng concentrate is known as a healthy food source, whereas it has off-flavor such as bitterness and sour flavor based on fermentation. ${\beta}$- and ${\gamma}$-cyclodextrin (CD) were used to encapsulate the off-flavor of fermented red ginseng concentrate by using response surface methodology design on ${\beta}$- and ${\gamma}-CD$ combination. The reducing effects were analyzed by sensory evaluation for bitter and sour tastes, ginsenoside Rb1, and total acidity. The optimized mixing ratio of ${\beta}$- and ${\gamma}-CD$ for reducing bitterness was the least expected value of 2.07 at ${\beta}-CD$ 3.74% versus the soluble solid content of fermented red ginseng concentrate and the ${\gamma}-CD$ 20.63% mixture. The encapsulation effects of ginsenoside Rb1 were the most expected value of 96.75% at ${\beta}-CD$ 3.47% and ${\gamma}-CD$ 19.89% mixture. The encapsulation effects of sour taste were the least expected value of 5.63 at ${\beta}-CD$ 9.34% and ${\gamma}-CD$ 9.96% mixture. The encapsulation effects of lactic acid were the most expected value of 67.73% at ${\beta}-CD$ 16.0% and ${\gamma}-CD$ 13.18% mixture. Based on encapsulation and each optimized combination, the most effective entrapping ${\beta}$-and ${\gamma}-CD$ combination ratio was ${\beta}-CD$ 10% and ${\gamma}-CD$ 13%.

Ginsenosides Inhibit NMDA Receptor-Mediated Epileptic Discharges in Cultured Hippocampal Neurons

  • Kim, Sun-Oh;Rhim, Hye-Whon
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.524-530
    • /
    • 2004
  • Epilepsy or the occurrence of spontaneous recurrent epileptiform discharges (SREDs, seizures) is one of the most common neurological disorders. Shift in the balance of brain between excitatory and inhibitory functions due to different types of structural or functional alterations may cause epileptiform discharges. N-Methyl-D-aspartate (NMDA) receptor dysfunctions have been implicated in modulating seizure activities. Seizures and epilepsy are clearly dependent on elevated intracellular calcium concentration ([C $a^{2+}$]$_{i}$ ) by NMDA receptor activation and can be prevented by NMDA antagonists. This perturbed [C $a^{2+}$]$_{i}$ levels is forerunner of neuronal death. However, therapeutic tools of elevated [C $a^{2+}$]$_{i}$ level during status epilepticus (SE) and SREDs have not been discovered yet. Our previous study showed fast inhibition of ginseng total saponins and ginsenoside R $g_3$ on NMDA receptor-mediated [C $a^{2+}$]$_{i}$ in cultured hippocampal neurons. We, therefore, examined the direct modulation of ginseng on hippocampal neuronal culture model of epilepsy using fura-2-based digital $Ca^{2+}$ imaging and neuronal viability assays. We found that ginseng total saponins and ginsenoside R $g_3$ inhibited $Mg^{2+}$ free-induced increase of [C $a^{2+}$]$_{i}$ and spontaneous [C $a^{2+}$]$_{i}$ oscillations in cultured rat hippocampal neurons. These results suggest that ginseng may playa neuroprotective role in perturbed homeostasis of [C $a^{2+}$]$_{i}$ and neuronal cell death via the inhibition of NMDA receptor-induced SE or SREDs.d SE or SREDs..

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Quality Characteristics of Ginseng Coffee Treated by Coating of White Ginseng Extract

  • Kim, Kyung-Tack;Lee, Young-Chul;Cho, Chang-Won;Rhee, Young-Kyoung;Bae, Hye-Min
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The quality attributes of coffee treated with different concentrations of white ginseng extract were examined. Increased concentration of white ginseng extract was associated with higher color values (Hunter L. a, b scale). The crude saponin contents of untreated roasted coffee beans (control) and those coated with $5^{\circ}$ Brix (WGC-1) and $20^{\circ}$ Brix white ginseng extract (WGC-2) were 8.29%, 8.74%, and 8.93%, respectively. The total ginsenoside contents of WGC-1 and WGC-2 were 0.3 mg/g and 0.6 mg/g, respectively. In the case of major ginsenosides, the contents of ginsenosides $Rg_1,\;Rg_2,\;Rb_1,\;Rb_2,\;Rg_2,\;Rh_1$, and $Rg_3$ increased directly with the concentration of white ginseng extract. Total sugar and acidic polysaccharide contents also increased directly with the concentration of white ginseng extract. The coffee beans coated with ginseng extract scored significantly higher ginseng taste scores than the control (p<0.005) in sensory evaluation. In terms of coffee taste, WGC-2 had significantly lower scores than the commercial coffee bean. In the consumer sensory evaluation, overall preference did not differ significantly among the treatments.