Browse > Article

Ginsenosides Inhibit NMDA Receptor-Mediated Epileptic Discharges in Cultured Hippocampal Neurons  

Kim, Sun-Oh (Biomedical Research Center, Korea Institute of Science and Technology(KIST))
Rhim, Hye-Whon (Biomedical Research Center, Korea Institute of Science and Technology(KIST))
Publication Information
Archives of Pharmacal Research / v.27, no.5, 2004 , pp. 524-530 More about this Journal
Abstract
Epilepsy or the occurrence of spontaneous recurrent epileptiform discharges (SREDs, seizures) is one of the most common neurological disorders. Shift in the balance of brain between excitatory and inhibitory functions due to different types of structural or functional alterations may cause epileptiform discharges. N-Methyl-D-aspartate (NMDA) receptor dysfunctions have been implicated in modulating seizure activities. Seizures and epilepsy are clearly dependent on elevated intracellular calcium concentration ([C $a^{2+}$]$_{i}$ ) by NMDA receptor activation and can be prevented by NMDA antagonists. This perturbed [C $a^{2+}$]$_{i}$ levels is forerunner of neuronal death. However, therapeutic tools of elevated [C $a^{2+}$]$_{i}$ level during status epilepticus (SE) and SREDs have not been discovered yet. Our previous study showed fast inhibition of ginseng total saponins and ginsenoside R $g_3$ on NMDA receptor-mediated [C $a^{2+}$]$_{i}$ in cultured hippocampal neurons. We, therefore, examined the direct modulation of ginseng on hippocampal neuronal culture model of epilepsy using fura-2-based digital $Ca^{2+}$ imaging and neuronal viability assays. We found that ginseng total saponins and ginsenoside R $g_3$ inhibited $Mg^{2+}$ free-induced increase of [C $a^{2+}$]$_{i}$ and spontaneous [C $a^{2+}$]$_{i}$ oscillations in cultured rat hippocampal neurons. These results suggest that ginseng may playa neuroprotective role in perturbed homeostasis of [C $a^{2+}$]$_{i}$ and neuronal cell death via the inhibition of NMDA receptor-induced SE or SREDs.d SE or SREDs..
Keywords
Ginseng; Ginsenosides; Seizure; Epilepsy; NMDA receptor; Intracellular calcium; Hippocampal neuron;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 15  (Related Records In Web of Science)
Times Cited By SCOPUS : 17
연도 인용수 순위
1 Chapman, A. G., Glutamate and epilepsy. J. Nutr., 130, 1043S-1045S (2000)
2 Choi, D. W., Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623-634 (1988)   DOI   PUBMED   ScienceOn
3 Pal, S., Sombati, S., Limbrick, D. D., Jr., and DeLorenzo, R. J., In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res., 851, 20-31 (1999)   DOI   PUBMED   ScienceOn
4 Raol, Y. H., Lynch, D. R., and Brooks-Kayal, A. R., Role of excitatory amino acids in developmental epilepsies. Ment. Retard. Deν. Disabil. Res. Rev., 7, 254-260 (2001)   DOI   ScienceOn
5 Rice, A. C. and DeLorenzo, R. J., NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res., 782, 240-247 (1998)   DOI   PUBMED   ScienceOn
6 Schwob, J. E., Fuller, T., Price, J. L., and Olney, J. W., Wide-spread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience, 5, 991-1014 (1980)   DOI   ScienceOn
7 Stasheff, S. F., Anderson, W. W., Clark, S., and Wilson, W. A., NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science, 245, 648-651 (1989)   DOI   PUBMED
8 Westbrook, G. L., Glutamate receptor update. Curr. Opin. Neurobiol., 4, 337-346 (1994)   DOI   PUBMED   ScienceOn
9 Sun, D. A., Sombati, S., and DeLorenzo, R. J., Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced 'epilepsy'. Stroke, 32, 2344-2350 (2001)   DOI   ScienceOn
10 Kim, S., Ahn, K., Oh, T. H., Nah, S. Y., and Rhim, H., Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Commun., 296, 247-254 (2002)   DOI   ScienceOn
11 Gulyas-Kovacs, A., Doczi, J., Tamawa, I., Detari, L, Banczerowski-Pelyhe, I., and Vilagi, I., Comparison of spontaneous and evoked epileptiform activity in three in vitro epilepsy models. Brain Res., 945, 174-180 (2002)   DOI   ScienceOn
12 Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63 (1983)   DOI   PUBMED   ScienceOn
13 Noebels, J. L., The biology of epilepsy genes. Annu. Rev. Neurosci., 26, 599-625 (2003)   DOI   PUBMED   ScienceOn
14 Churn, S. B., Anderson, W. W., and DeLorenzo, R. J., Exposure of hippocampal slices to magnesium-free medium produces epileptiform activity and simultaneously decreases calcium and calmodulin-dependent protein kinase II activity. Epilepsy Res., 9, 211-217 (1991)   DOI   ScienceOn
15 Honchar, M. P., Olney, J. W., and Sherman, W. R., Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science, 220, 323-325(1983)   DOI   PUBMED
16 Scheffer, I. E. and Berkovic, S. F., The genetics of human epilepsy. Trends Pharmacol. Sci., 24, 428-433 (2003)   DOI   ScienceOn
17 Bliss, T. V. and Collingridge, G. L., A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31-39 (1993)   DOI   ScienceOn
18 Kim, D., Song, I., Keum, S., lee, T., Jeong, M. J., Kim, S. S., McEnery, M. W., and Shin, H. S., Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron, 31, 35-45 (2001)   DOI   ScienceOn
19 Horn, R. and Marty, A., Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol., 92, 145-159 (1988)   DOI   ScienceOn
20 Burgess, D. L. and Noebels, J. L., Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Res., 36, 111-122 (1999)   DOI   ScienceOn
21 Behr, J., Heinemann, U., and Mody, I., Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J. Neurophysiol., 85, 2195-2202 (2001)   PUBMED
22 Wong, C. G., Bottiglieri, T., and Snead, O. C., 3rd, GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol., 54 Suppl 6, S3-12 (2003)   PUBMED
23 Clifford, D. B., Olney, J. W., Maniotis, A., Collins, R. C., and Zorumski, C. F., The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 23, 953-968 (1987)   DOI   ScienceOn
24 Clifford, D. B., Olney, J. W., Benz, A. M., Fuller, T. A., and Zorumski, C. F., Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia, 31, 382-390 (1990)   DOI   ScienceOn
25 Jahr, C. E. and Stevens, C. F., Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proc. Natl. Acad. Sci. U.S.A., 90, 11573-11577 (1993)   DOI   ScienceOn
26 Delorenzo, R. J., Pal, S., and Sombati, S., Prolonged activation of the N-methyl-D-aspartate receptor-$Ca^{2+}$ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc. Natl. Acad. Sci. U.S.A., 95, 14482-14487 (1998)   DOI   ScienceOn
27 Sombati, S. and Delorenzo, R. J., Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol., 73, 1706-1711 (1995)   PUBMED