• Title/Summary/Keyword: total bacterial numbers

Search Result 140, Processing Time 0.028 seconds

Ecological Characteristics of Actinomycetes from Mercury and Chrome Polluted Soil (수은, 6가크롬 오염토양으로부터 분리된 방선균군의 생태학적 특성)

  • Cho Min-Hye;Han Sang-Mi;Baek Ha-Ju;Whang Kyung-Sook
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.38-45
    • /
    • 2006
  • Ecological characteristics of microbial populations inhabiting heavy metal polluted soil were investigated. The samples were collected from 293 sites around an factory and industry at Gyeoungsangbuk-do. We measured the contents of seven heavy metal elements (Cd, Cu, As, Hg, Pb, $Cr^{6+}$, CN), seven sites have been seriously contaminated by mercury and chrome. A quantitative evaluation of microbial populations in mercury and chrome contaminated soil was examined by using plate count method. Bacterial numbers in polluted soil samples ranged from $7.4X10^5\;to\;9.3X10^7\;cfu\;g^{-1}$, about $10\sim100$ fold less than the count for the unpolluted soil. Moulds were not detected in chrome polluted soil. The log values of actinomycetes of each contaminated soil samples were log ranged from 6.18 to 7.52. The ratio of actinomycetes was similar to unpolluted soil. The investigation showed actinomycetes to be the major microbial population inhabiting the mercury and chrome polluted soil. Thirty-one isolates among the total isolates were examined for antibacterial activity. These isolates were identified based on a phylogenetic analysis using 16S rRNA gene nucleotide sequences, they were categorized in three major phylogenetic groups, belong to the Streptomyces (6 strains), Saccharopolyspora (3 strains), Nocardiodes (1 strain). On the phylogenetic tree, the clade consisting of five isolates were distantly related to all of the established Streptomycetes genera, indicating the possibility as members of new species.

Effects of Acidification on the Species Composition and the Changes of Extracelluar Enzymes of Heterotrophic Bacterial Community (수계종속 영양세균 군집의 종조성 및 세포외 효소의 변화에 미치는 산성화의 영향)

  • Choi, Yong-Keel;Han, Myung-Soo;Kim, Sewha;Lee, Kyung;Yoo, Kwang-Il
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2002
  • In an artificial pH-gradient batch culture system, the author analyzed the effects of acidification on the species composition of heterotrophic bacteria. As the result of this study, it was found that the numbers of total bacteria were not affected by acidification and that the population size of heterotrophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from all of the pH gradient were 12 genera and 22 species, and among them, gram negative and gram positive bacteria were 04% and 30%, respectively. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. Regarding to distribution rate of genuses in each pH gradient, 13 genuses appeared at pH 7 while only 5 genuses appeared at pH 3, which means that the diversity of genera decrease as pH decreased. The activities of extracellular enzyme showed the ranges of $0.008-0.292\;\mu{M}\ell^{-1}\;hr^{-1}$ in bioreactor system. The enzymatic activities decreased rapidly below pH 5 and then sustained 5-38% at the lower pH values.

Analysis of Microbial Contamination of Sprouts and Fresh-cut Salads in a Market (유통중인 즉석섭취 새싹채소와 샐러드의 세균오염 분석)

  • Kang, Tae-Mi;Cho, Sung-Kyung;Park, Ji-Yong;Song, Kyung-Bin;Chung, Myung-Soo;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.490-494
    • /
    • 2011
  • Although bacterial outbreaks from ready-to-eat foods have increased, little information is available on microbial quality of sprouts in markets. Fifty sprouts and 30 salads were collected from wholesale markets. Total aerobic count (TAC), coliform, Escherichia coli, and some pathogens were detected. TAC for sprouts was 7.95 log CFU/g and 6.70 for salads, indicating that sprouts were more contaminated by 1 log CFU/g than that of salads. The numbers of coliform were 6.69 log CFU/g for sprouts and 5.42 for salads. E. coli was detected in 16 of 50 sprout samples at 2.38 log CFU/g and eight of 30 salads at 2.21 log CFU/g. Bacillus cereus was detected in 29 of 50 sprout samples and 16 of 30 salads, and the counts were mostly <3 log CFU/g. Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Clostridium perfringens were not detected. Therefore, although pathogens may not be a high risk for these foods, the high TAC and E. coli contamination require improved production and distribution methods, particularly for sprouts.

Effect of acidified milk feeding on the intake, average daily gain and fecal microbiological diversity of Holstein dairy calves

  • Chen, Yong;Gao, Yan;Yin, Shuxin;Zhang, Shuai;Wang, Lu;Qu, Yongli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1265-1272
    • /
    • 2020
  • Objective: To evaluate the effect of feeding acidified milk on the growth and fecal microbial diversity of dairy calves. Methods: Twenty healthy 3-day-old female Holstein calves with similar body weights were selected and randomly divided into two groups. One group was fed pasteurized milk (PM, Control), while the other was fed acidified milk (AM) ad libitum until weaned (day 60). The experiment lasted until day 180. Results: There was no difference in the nutritional components between PM and AM. The numbers of Escherichia coli and total bacteria in AM were lower than in PM. At 31 to 40 and 41 to 50 days of age, the milk intake of calves fed AM was higher than that of calves fed PM (p<0.05), and the solid feed intake of calves fed AM was higher than that of calves fed PM at 61 to 90 days (p<0.05). The average daily gain of calves fed AM was also higher than that of calves fed PM at 31 to 60, 61 to 180, and 7 to 180 days (p<0.05). The calves fed AM tended to have a lower diarrhea rate than those fed PM (p = 0.059). Bacteroides had the highest abundance in the feces of calves fed AM on day 50, while Ruminococcaceae_UCG_005 had the highest abundance in the feces of calves fed AM on day 90 and calves fed PM on days 50 and 90. At the taxonomic level, the linear discriminant analysis scores of 27 microorganisms in the feces of calves fed AM and PM on days 50 and 90 were higher than 4.0. Conclusion: Feeding AM increased calf average daily gain and affected fecal bacterial diversity.

Effects of Acidification on the Species Compositions of Heterotrophic Bacterial Community in Microcosm (수계 종속영양세균 군집의 종조성에 미치는 산성화의 영향)

  • 안영범;조홍범;최영길
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 1997
  • In an artificial pH-gradient hatch culture system, the author analyzed the effects of acidification on the species composition of heterotrophic bacteria. As the result of this study, it was found that the numbers of total bacteria were not affected by acidification and that the population size of heterotrophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from all of the pH gradient were 12 genera and 22 species. and among them, gram negative and gram positive bacteria were 64% and 36%, respectivcly. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. Regarding to distrihution rate of genuses in each pH gradient, 13 genuses appeared at pH 7 while only 5 genuses appeared at pH 3. which means that the diversity of genera decrease as pH decreased. As a result of cluster analysis, diversity indices 01 species had ranges from 1.13 to 2.37, and decreased as pH decreased. In order to evaluate the diversity of different size samples, we analyzed the expected number of species appearance according to pH by rarefaction method. The statistical significance of species diversity was verified by the fact that the number decreased at lower pH.

  • PDF

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Studies for Antibiotic Free Chicken Production Using Water Extracts from Artemisia capillaris and Camellia sinensis (인진쑥 및 녹차 추출물을 이용한 무항생제 닭고기 생산 연구)

  • Kim, Dong-Wook;Kim, Ji-Hyuk;Kang, Geun-Ho;Kang, Hwan-Ku;Park, Sung-Bok;Park, Jae-Hong;Bang, Han-Tae;Kim, Min-Ji;Na, Jae-Cheon;Chae, Hyun-Suk;Choi, Hee-Chul;Suh, Ok-Suk;Kim, Sang-Ho;Kang, Chang-Won
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.975-988
    • /
    • 2010
  • Two experiments were conducted to determine whether water extracts from Artemisia capillaries (A. capillaries) and Camellia sinensis (C. sinensis) could be used as alternatives to antibiotic growth promoters in broiler feed. The experiment 1 was verified their chemical composition, extracts yields, total phenolic compounds concentration, antioxidant activity, antimicrobial activity, and chicken splenocytes proliferation through in vitro test. The extract yields of A. capillaries and C. sinensis were 26.5 and 16.8%, respectively. Total phenolic compounds concentrations of them expressed as gallic acid equivalent were 15.28 and 26.74 mg/mL, respectively. Electron donating abilities of them expressed as $SC_{50}$ showing 50% DPPH radical scavenging were 0.30 and 0.06 mg, respectively. Bacterial inhibitory rates of them against Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium were ranged from 42.1 to 52.3% and from 21.6 to 33.7%, respectively. And, these extracts increased proliferation of chicken splenocytes. Especially, A. capillaris was more excellent than Echinacea and Concanavalin A known as T-cell stimulator. The experiment 2 was investigated their effects on growth performance, relative organ weight, cecal microflora, blood biochemical parameters, and splenic cytokines mRNA expression in broiler chicks. Four hundred eighty 1-day-old male broiler chicks (Ross 308) were divided in to 4 treatment groups with 4 replicates of 30 birds in each group: NC (control, no antibiotics), PC (avilamycin, 10 ppm; salinomycin, 60 ppm), AC (A. capillaries, 100 ppm), and CS (C. sinensis, 100 ppm); treatments were administered through water supplementation. Final body weight was significantly higher in all treated groups than in NC (p<0.05). Cecal Salmonella numbers were significantly or somewhat decreased in all treated groups than in NC (p<0.05). The relative weights and lengths of the small intestine were more significantly decreased in the PC and AC groups than in the other groups. Cecal Salmonella numbers were significantly or somewhat decreased in all treated groups than in the NC group (p<0.05). The contents of total cholesterol, aspatate aminotransferase, and alanine aminotransferase in blood serum were more significantly decreased in all treated groups than in NC (p<0.05). In conclusion, these results suggested the possibility that these extracts could serve as alternatives for antibiotic growth promoters.

Microbiological and Physicochemical Changes of Vegetable Juices (Angelica keiskei and Brassica loeracea var. acephala) Treated by UV Irradiation (UV 조사 신립초 및 케일 녹즙의 저장기간에 따른 미생물 및 이화학적 변화)

  • Kwon, Sang-Chul;Choi, Goo-Hee;Yu, Kwang-Won;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.1030-1037
    • /
    • 2010
  • A fresh juice has become a new functional food available for dieting and health. However, the shelf-life of vegetable juice is very short because of the absence of heat pasteurization process. To elongate the shelf-life of vegetable juices, such as Angelica keiskei and Brassica loeracea var. acephala, the changes of microbiological, chemical and sensory property by UV irradiation were investigated. The total aerobic bacterial numbers of A. keiskei and B. loeracea var. acephala vegetable juices were $3.2{\times}10^5$ and $7.0{\times}10^4\;CFU/mL$, respectively, after wring process. However, the numbers were $3.6{\times}10^3{\sim}9.7{\times}10^3$ and $3.7{\times}10^3{\sim}2.7{\times}10^4\;CFU/mL$ after UV treatment on wring juice, and this lower microbial number was maintained during storage. The number of coliform bacteria also reduced significantly by UV treatment, and the bactericidal effect was higher when the flow rate is slower. The increase of lightness and yellowness, and decrease of redness were observed after treatment of UV on both vegetable juices, but the differences were not significant between flow rates. The ascorbic acid contents of vegetable juices were reduced by UV irradiation regardless of flow rate, and storage. Overall acceptance in sensory analysis revealed that there was no significant difference between the control and vegetable juice irradiated UV at 0 days, but sample with UV treatment showed higher score at 3 days. Therefore, UV treatment on vegetable juice can elongate the shelf-life without any problems in flavor and color.

Changes of Physicochemical Properties during Fermentation of Peach Wine and Quality Improvement by Ultrafiltration (복숭아주 발효시 이화학적 특성변화와 한외여과에 의한 품질 향상)

  • 정재호;목철균;임상빈;박영서
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.506-512
    • /
    • 2003
  • Peach wine was fermented at $25^{\circ}C$ for 2 weeks using Saccharomyces cerevisiae KCCM 12224, aged at 15$^{\circ}C$ for 14 weeks, and its physicochemical and microbiological changes were investigated. The viable bacterial cell numbers, 1.4$\times$10$^3$ CFU/mL at the beginning of fermentation, increased to 2.8$\times$10$^{6}$ CFU/mL after 2 weeks, but decreased to 7.0$\times$10$^3$ CFU/mL after 14 weeks. The viable yeast cell numbers were changed from 3.4$\times$10$^2$ CFU/mL to 2.4$\times$10$^{7}$ CFU/mL during fermentation, and decreased to 4.0$\times$10$^4$ CFU/mL after aging. Turbidity total sugar content, reducing sugar content, solid content and b value of peach wine decreased during fermentation but acidity, alcohol content, L and a value increased. Most physicochemical properties except alcohol content and reducing sugar content were not changed significantly during aging. When peach wine was filtered through 0.45 ${\mu}{\textrm}{m}$ nitrocellulose membrane followed by various ultrafiltration membranes with different molecular weight cut-off values, Biomax 100K membrane, with 79 liter/$m^2$/h (LMH) of initial flux, was suitable for ultrafiltration process of peach wine. These membrane filtration treatments resulted in complete removal of microorganisms and decrease in turbidity and alcohol content without changes in other chemical properties. The physicochemical properties of peach wine were not changed and any microorganisms were not found during the storage at 3$0^{\circ}C$ for 12 Weeks.