• Title/Summary/Keyword: torsional sensitivity

Search Result 33, Processing Time 0.034 seconds

Sensitivity Analysis for Natural Frequency of Torsional Shafting with Constant Cross Section Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 일정 단면을 갖는 비틀림 축계의 고유진동수 민감도 해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2012
  • In this paper, the authors formulate the sensitivity analysis algorithm for the natural frequency of a torsional shafting by expanding the transfer stiffness coefficient method. The basic concept of the present algorithm is based on the transfer of sensitivity stiffness coefficient, which is the derivative of stiffness coefficient with respect to design parameter, at every node from the first node to the last node in analytical model. The effectiveness of the present algorithm is confirmed by comparing the results of the sensitivity analysis and those of the reanalysis for the natural frequencies of a torsional shafting with a constant cross section. In numerical calculation, the design parameter is the diameter of the shaft element of the torsional shafting.

Torsional effects in symmetrical steel buckling restrained braced frames: evaluation of seismic design provisions

  • Roy, Jonathan;Tremblay, Robert;Leger, Pierre
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.423-442
    • /
    • 2015
  • The effects of accidental eccentricity on the seismic response of four-storey steel buildings laterally stabilized by buckling restrained braced frames are studied. The structures have a square, symmetrical footprint, without inherent eccentricity between the center of lateral resistance (CR) and the center of mass (CM). The position of the bracing bents in the buildings was varied to obtain three different levels of torsional sensitivity: low, intermediate and high. The structures were designed in accordance with the seismic design provisions of the 2010 National Building Code of Canada (NBCC). Three different analysis methods were used to account for accidental eccentricity in design: (1) Equivalent Static Procedure with static in-plane torsional moments assuming a mass eccentricity of 10% of the building dimension (ESP); (2) Response Spectrum Analysis with static torsional moments based on 10% of the building dimension (RSA-10); and (3) Response Spectrum Analysis with the CM being displaced by 5% of the building dimension (RSA-5). Time history analyses were performed under a set of eleven two-component historical records. The analyses showed that the ESP and RSA-10 methods can give appropriate results for all three levels of torsional sensitivity. When using the RSA-5 method, adequate performance was also achieved for the low and intermediate torsional sensitivity cases, but the method led to excessive displacements (5-10% storey drifts), near collapse state, for the highly torsionally sensitive structures. These results support the current provisions of NBCC 2010.

The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting (선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석)

  • Yeon-Ho Kim;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.48-55
    • /
    • 2001
  • In this paper, sensitivity analysis for the coupled axial and torsional undamped free vibration of ship propulsion shafting is proposed. The purpose of this study is to effectively and optimally design the resonance frequencies of propulsion shafting affecting barred speed range of main engine by modifying the diameters of intermediate and propeller shafts. The presented method is validated by the sensitivity analysis for the natural frequencies of propulsion shafting of two real large merchant ships. In addition, the changes of natural frequency and resonance main engine speed are discussed in case that the diameter is varied within the range regulated by the rule of shipping register.

  • PDF

Reliability based analysis of torsional divergence of long span suspension bridges

  • Cheng, Jin;Li, Q.S.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • A systematic reliability evaluation approach for torsional divergence analysis of long span suspension bridges is proposed, consisting of the first order reliability method and a simplified torsional divergence analysis method. The proposed method was implemented in the deterministic torsional divergence analysis program SIMTDB through a new strategy involving interfacing the proposed method with SIMTDB via a freely available MATLAB software tool (FERUM). A numerical example involving a detailed computational model of a long span suspension bridge with a main span of 888 m is presented to demonstrate the applicability and merits of the proposed method and the associated software strategy. Finally, the most influential random variables on the reliability of long span suspension bridges against torsional divergence failure are identified by a sensitivity analysis.

Development of an Array of EMAT for a Long-Range Inspection of a Pipe Using a Torsional Guided Wave

  • Cheong, Yong-Moo;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • A torsional guided wave mode in a tubular structure has many advantages in obtaining a higher sensitivity and lower attenuation for a defect, because it shows no dispersion characteristics and no radial displacement for a tubular structure. Many attempts have been made to excite and receive torsional guided waves by conventional piezoelectric transducers, but only a few examples are used during a practical field inspection. In this study, an array of electromagnetic acoustic transducers (EMATs) were for an excitation and reception of the torsional guided waves in a pipe was designed and fabricated. The signal patterns were analyzed based on various beam path length. The feasibility of detecting the defects was investigated through a series of experiments with artificial notches on a pipe.

Torsional analysis of a single-bent leaf flexure

  • Nguyen, Nghia Huu;Lim, Byoung-Duk;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.189-198
    • /
    • 2015
  • We present a torsion analysis of single-bent leaf flexure that is partially restrained, subject to a torsional load. The theoretical equations for the torsional angle are derived using Castigliano's theorem. These equations consider the partially restrained warping, and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory result and the FEA result are lower than 6%. This indicates that the proposed theoretical torsional analysis with partially restrained warping is sufficiently accurate.

Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members (부재간 결합부의 동적 특성 분석 및 강성 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

Sensitivity Analysis of Coupled Horizontal and Torsional Vibration of Hull Girder (선체 저차 수평.비틂 연성 고유진동 감도해석)

  • Dae-Seung Cho;Sa-Soo Kim;Doo-Yong Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This paper resents a prediction method of natural frequencies of coupled horizontal and torsional vibration of hull girder based on design sensitivity analysis in case of the changes of system parameters. The sensitivity analysis is formulated applying the direct differentiation method and transfer matrix method. In the analysis, warping, shear deformation due to torsion and the continuity condition at the connected part of open and closed hull section are considered. Using the presented method. The affection for natural frequencies by the change of system parameters, especially cargo and added mass and their centers, is numerically investigated for a real large container carrier.

  • PDF