• 제목/요약/키워드: torsion functor

검색결과 7건 처리시간 0.02초

TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY

  • Bujan-Zadeh, Mohamad Hosin;Rasoulyar, S.
    • 대한수학회보
    • /
    • 제39권4호
    • /
    • pp.577-587
    • /
    • 2002
  • Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.

ESSENTIAL EXACT SEQUENCES

  • Akray, Ismael;Zebari, Amin
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.469-480
    • /
    • 2020
  • Let R be a commutative ring with identity and M a unital R-module. We give a new generalization of exact sequences called e-exact sequences. A sequence $0{\rightarrow}A{\longrightarrow[20]^f}B{\longrightarrow[20]^g}C{\rightarrow}0$ is said to be e-exact if f is monic, Imf ≤e Kerg and Img ≤e C. We modify many famous theorems including exact sequences to one includes e-exact sequences like 3 × 3 lemma, four and five lemmas. Next, we prove that for torsion-free module M, the contravariant functor Hom(-, M) is left e-exact and the covariant functor M ⊗ - is right e-exact. Finally, we define e-projective module and characterize it. We show that the direct sum of R-modules is e-projective module if and only if each summand is e-projective.

EXACTNESS OF COCHAIN COMPLEXES VIA ADDITIVE FUNCTORS

  • Campanini, Federico;Facchini, Alberto
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1075-1085
    • /
    • 2020
  • We investigate the relation between the notion of e-exactness, recently introduced by Akray and Zebary, and some functors naturally related to it, such as the functor P : Mod-R → Spec(Mod-R), where Spec(Mod-R) denotes the spectral category of Mod-R, and the localization functor with respect to the singular torsion theory.

THE HOMOLOGY REGARDING TO E-EXACT SEQUENCES

  • Ismael Akray;Amin Mahamad Zebari
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.21-38
    • /
    • 2023
  • Let R be a commutative ring with identity. Let R be an integral domain and M a torsion-free R-module. We investigate the relation between the notion of e-exactness, recently introduced by Akray and Zebari [1], and generalized the concept of homology, and establish a relation between e-exact sequences and homology of modules. We modify some applications of e-exact sequences in homology and reprove some results of homology with e-exact sequences such as horseshoe lemma, long exact sequences, connecting homomorphisms and etc. Next, we generalize two special drived functor T or and Ext, and study some properties of them.

A GENERALIZATION OF COHEN-MACAULAY MODULES BY TORSION THEORY

  • BIJAN-ZADEH, M.H.;PAYROVI, SH.
    • 호남수학학술지
    • /
    • 제20권1호
    • /
    • pp.1-14
    • /
    • 1998
  • In this short note we study the torsion theories over a commutative ring R and discuss a relative dimension related to such theories for R-modules. Let ${\sigma}$ be a torsion functor and (T, F) be its corresponding partition of Spec(R). The concept of ${\sigma}$-Cohen Macaulay (abbr. ${\sigma}$-CM) module is defined and some of the main points concerning the usual Cohen-Macaulay modules are extended. In particular it is shown that if M is a non-zero ${\sigma}$-CM module over R and S is a multiplicatively closed subset of R such that, for all minimal element of T, $S{\cap}p={\emptyset}$, then $S^{-1}M$ is a $S^{-1}{\sigma}$-CM module over $S^{-1}$R, where $S^{-1}{\sigma}$ is the direct image of ${\sigma}$ under the natural ring homomorphism $R{\longrightarrow}S^{-1}R$.

  • PDF

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

ON THE HOLONOMIZATION OF SEMIHOLONOMIC JETS

  • MIKULSKI, WLODZIMIERZ M.
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1365-1373
    • /
    • 2015
  • We find all ${\mathcal{F}}{\mathcal{M}}_m$-natural operators A transforming torsion free classical linear connections ${\nabla}$ on m-manifolds M into base preserving fibred maps $A({\nabla}):{\bar{J}}^rY{\rightarrow}J^rY$ for ${\mathcal{F}}{\mathcal{M}}_m$-objects Y with bases M, where ${\bar{J}}^r$, $J^r$ are the semiholonomic and holonomic jet functors of order r on the category ${\mathcal{F}}{\mathcal{M}}_m$ of fibred manifolds with m-dimensional bases and their fibred maps with embeddings as base maps.