• Title/Summary/Keyword: tobacco plants

Search Result 550, Processing Time 0.024 seconds

Disease Severity of Tobacco Plants Surveyed in the Northern Kyeongbuk Province in 1992 (1992년도 경북북부지역의 담배병해 발생상황)

  • 이영근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.15-25
    • /
    • 1993
  • The severities of major tobacco diseases had been surveyed throughout northern Kyeongbuk, a major flue-cured tobacco growing district in Korea, in relation to the actual control method used by the farmers in 1992. At seedling stage, anthracnose caused by Colletotrichum nicotianae was major disease of the plant due to poor damage of the temporary transplanting pots. Mosaic caused by tobacco mosaic virus(TMV) was very severe in certain of greenhouses. Although viral disease caused by TMV, cucumber mosaic virus(CMV) and by potato virus Y(PVY) were severe in fields, but mosaic by TMV was major of the diseases. Potato virus Y was found later than that in Honam district. The late occurrence of the disease might be caused the difference between cultivating method of potato plants in northern Kyeongbuk and that in Honam district. In fields suffered from hail disaster, the damage of tobacco plants by angular leaf spot was severe. Most of tobacco growers had wrong information about the practical methods not only of milk treatment for the protection of the plants from TMV, but also of fungicide applications for the control of other major diseases. It suggested that education on the methods to the farmers must be very important for control of the diseases.

  • PDF

Development of Basta Resistant Tobacco Using Artificial Phosphinothricin Acetyltransferase Gene (인공합성 Phosphinothricin Acetyltransferase 유전자에 의한 Basta 내성 연초식물체의 개발)

  • 양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.188-194
    • /
    • 1998
  • This experiment was conducted to introduce phosphinothricin acetyl -transferase(PAT) gene, resistant to basta and non-selective herbidide, into tobacco(Nicotiana tabacum cv.BY4). For shoot formation,tobacco leaf disks were placed on the MS medium supplemented with 2.0mg/L BA and 0.1mg/L NAA. In this medium condition, tobacco leaf disces were cocultivated with A. tumefaciens MP90 containing NPT IIand PAT resistant to kanamycin and Basta, respectively. Shoots were obtained in the medium containing antibiotics, and those were transferred to rooting medium supplemented with 0.1mg/L NAA and antibiotics. The plants obtaining roots were transplanted into soil. Phenotype of transgenic tobacco plant was mostly as normal plant. However, about 5% was abnormal plant, which did not set seeds. PCR analysis and southern blot were performed to determine transformation. As the results, it was confirmed that PAT gene was stably integrated into tobacco genome.When herbicide, basta, was sprayed to the plants confirmed by PCR, the transgenic plants showed normal growth, whereas normal plants died. Therefore, the result of this experiment show that tobacco transformation for the resistance to basta, non-selective herbicide, was successful because PAT gene was stably integrated into tobacco.

  • PDF

형질전환 연초의 복합바이러스 저항성

  • 이기원;채순용;이청호;이영기;강신웅;박성원;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • KF 116 was TMV resistant tobacco plant and KB 301 was PVY resistant plant transformed with TMV CP gene and PVY CP gene, respectively. These resistant plants were cross-fertilized and the 4 lines of the TMV-PVY resistant plants were selected from F1 hybrid plants. The rate of PVY-resistant plant in these hybrids was 100 percent and that of TMV-resistant plants including delay type was 90-98 percent at 4 weeks after virus inoculation. It was confirmed that the TMV and PVY CP genes were integrated into the genome of hybrid plants by genomic PCR, and Southern blot hybridization. The genome of F1 hybrid plants had one copy and 4 copies of PVY-CP gene and TMV-CP gene, respectively, and CaMV 35S promoters were not methylated, regardless of the difference symptom development to TMV.

  • PDF

Some Management Practices Affecting Outcrossing and Seed Production in Burley Tobacco (Nicotiana tabacum L.) (연초 버어리종의 자연교잡율과 종자생산에 관련된 몇가지 요인)

  • 정석훈;최상주;조천준;김대송;조명조;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 1996
  • In this study effects of isolation distance, transplanting time of maternal plants, and bagging of flower head with the gauze-cloth bag on the outcrossing of burley tobacco (Nicotiana tabacum L.) were investigated. Also the effect of fertilizer level and control of the number of capsules per plant on seed production and quality were examined. A male sterile line. produced 0.3 to 3.8 capsules Per plant when it was Planted with normally flowering tobacco with the average outcrossing of 7.2 plants, ranging from 2 to 18 out of 20 plants. With the farther the isolation distance between maternal plants and pollen donor plant, the lower the outcrossing occurred. Outcrossing occurred even at the isolation distance of 312 m. When the maternal plants were transplanted 35 days after transplanting the pollen donor ones, the outcrossed plants were not decreased significantly. The bagging of the flower head with the gauze-cloth bas (#0.9∼ 1.0 mm) decreased the outcrossed plants significantly, but couldn't prevent the outcrossing completely. The seed amount per plant was higher in the highly fertilized cultivation. The number of seed capsules per plant affected significantly on seed yield and quality. When the seed capsules was controlled by 30 or 50 capsules per plant, the weight of 1,000 seeds and germination rate were higher than those with 70 or 90 capsules per plant. Key words : Nicotiana tabacum, outcrossing, bagging.

  • PDF

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Transformation of Brassica napus with Acid Phosphatase Gene (Acid Phosphatase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Son, Dae-Young;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.285-292
    • /
    • 1997
  • This study was conducted to obtain the transgenic Brnssica napus plants with tobacco Apase gene using the binary vector system of Agrobacteriurn fumefociens. The results obtained were summarized as follows: A repressible acid phosphatase gene of Saccharon~yces cerevisiae, pho105 was used for screening of tobacco Apase cDNA. In order to identify Apase gene in tobacco genome, Southern blot analysis was pcrformed and the Apase gcnc may be present as a single copy, or at most two or three copies, in tobacco genome. To isolate the tobacco Apase gene, tobacco cDNA library was constructed using purifed mRNA from -Pi treated tobacco root and the plaque forming unit of the library was 2.8 x $10^5$ pfu/m${\ell}$, therefore the library might cover all expressed mRNAs. Using pho5 as a probe. tobacco Apase cDNA was cloned, and restriction mapping and Southern blot analysis of cDNA insert were revealed that the 3.6 kb cDNA contained tobacco acid phosphatase cDNA. Plasmid pGA695 -tcAPl was constructed by subcloning tobacco Apase cDNA into the Hind site of pGA695 with 35s promoter which can be expressed constitutively in plants. The Brassica napus cotyledonary petioles were cocultivated with the ,4 grobacteriunz and transferred to the selection medium. The transformed and regenerated plants were transplanted to soil medium. Southern blot analysis was done on the transformed plants, and it was confirmed that a foregin gene was stably integrated into the genonies of B. nnpus plants.

  • PDF

Gene Expression in The Fifth Generation of TMV Resistant Transgenic Tobacco Plane at Elevated Temperature (TMV 저항성 형질전환 연초식물체 제 5 세대에서 유전자 안정성 및 고온조건에서의 유전자 발현)

  • 이기원;박성원;이청호;박은경;김상석;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • Tobacco mosaic virus(TMV) coat protein cDNA was transformed to Nicotiana tabacum cv. NC82 and the transgenic tobacco plants resistant to TMV infection were isolated in the next generation. The expression of TMV coat protein cDNA and genetic stability of the fifth generation of TMV resistant transgenic tobacco plants at the higher temperature were investigated. The TMV coat protein cDNA was amplified by genomic PCR in all the TMV resistant transgenic tobacco plants. The TMV coat protein expressed in the transgenic tobacco plants was detected at very low level by immunoblot hybridization. Even in tansgenic plants that showed the viral symptom only on very late sucker growth (delay type plants), the coat protein expression in the suckers was much less than that of susceptible tobacco infected with TMV. The TMV coat protein expressed in the transgenic tobacco plants was below 0.01% of total protein. Transcription and expression of the coat protein cDNA in delay type plants were observbed at high temperature (38$^{\circ}C$), and TMV replication was suppressed at both 28$^{\circ}C$ and 38$^{\circ}C$. This indicates that unlike the resistance conferred by 'N' gene. TMV resistance of transgenic tobacco plant won't break down at high temperature.

  • PDF

Cadmium resistance in tobacco plants expressing the MuSI gene

  • Kim, Young-Nam;Kim, Ji-Seoung;Seo, Sang-Gyu;Lee, Young-Woo;Baek, Seung-Woo;Kim, Il-Sup;Yoon, Ho-Sung;Kim, Kwon-Rae;Kim, Sun-Hyung;Kim, Kye-Hoon
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI transgenic tobacco plants absorbed less Cd than wild-type plants. Cd translocation from roots to shoots was reduced in the transgenic plants, thereby avoiding Cd toxicity. The number of short trichomes in the leaves of wild-type tobacco plants was increased by Cd treatment, while this was unchanged in MuSI transgenic tobacco. These results suggest that MuSI transgenic tobacco plants have enhanced tolerance to Cd via reduced Cd uptake and/or increased Cd immobilization in the roots, resulting in less Cd translocation to the shoots.

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.

The Potato Tuber Moth (Phthorimaea Operculella Zeller ) Distribution and Damage to Tobacco Plants (감자나방 (Phthorimaea opercullella Zeller)의 생분포와 피해에 관한 조사)

  • 손준수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1979
  • The potato tuber moth (Phthorimaea operculella Zeller ) was surveyed for its distribution and damage to tobacco plants in field. The insect was found in all four localities examined ; Dalseong and youngdeog of Gyeongbuk Province, and Boseong and Jindo island of Cheongnam Province. About half of the tobacco plants examined contained the larvae with the highest level (76.7%)of larvae infestation in the Jindo island. In a given tobacco plant the larvae were concentrated on the first three leaves, from bottom, with 82.4 5 of the total number, and a single leaf usually has one to three larval.

  • PDF