• Title/Summary/Keyword: titanium ion

Search Result 190, Processing Time 0.027 seconds

Effect of Titanium-Ion on the Growth of Various Bacterial Species

  • Yu, Tae-Shick
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.47-50
    • /
    • 2004
  • There are a number of studies that explain the metabolism and roles of metallic titanium and titanium-ion. One of the most intriguing results from these studies is the finding of metallic titanium having no bacteriostatic effects on oral bacterial species. In this research, the effects of titanium-ion on the growth of twenty-two bacterial species, some of which are commonly found in foods such as yoghurt, kimchi, and soy fermented products, were investigated. All but two bacteria, Escherichia coli and Pseudomonas aeruginosa appeared to be sensitive to titanium-ion. These two species were grown on 360 $\mu\textrm{g}$/$m\ell$ of titanium-ions, and they were found to be resistant to the titanium-ion. Both the wild-type and plasmid-cured E. coli showed good growth in a medium with 200 $\mu\textrm{g}$/$m\ell$ of titanium-ions. These results suggest that titanium-resistance was independent from the effects of the plasmid in E. coli.

Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant (질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향)

  • Byeon, Eung-Seon;Kim, Dong-Su;Lee, Gu-Hyeon;Jeong, Yong-Su
    • 연구논문집
    • /
    • s.30
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

Surface Modification of Titanium Based Biomaterials by Ion Beam

  • Liu, Xianghuai;Huang, Nan;Yang, Ping;Cai, Guanjun;Chen, Yuanru;Zheng, Zhi hong;Zhou, Zhuyao
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.8-19
    • /
    • 1995
  • Ion beam enhanced deopsition(IBED) was adopted to synthesize biocompatible titanium oxide film. Structure characteristics of titanium oxide film were investigated by RBS, AES and XRD. The blood compatibility of the titanium oxide film was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide film is improved significantly. The mechanism of anticoagulation of the titanium oxide film was discussed.

  • PDF

Titanium Oxide Film : A New Biomaterial For Artificial Heart Valve Prepared by Ion Beam Enhanced Deposition

  • Liu, Xianghuai;Zhang, Feng;Zheng, Zhihong;Huang, Nan
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.1-15
    • /
    • 1997
  • Titanium oxide films were prepared by ion beam enhanced deposition where the films were synthesized by deposition titianium atoms and simultaneously bombarding with xenon ion beam at an energy of 40 keV in an $O_2$ environ,ent. Structure and composition of titanium oxide films were investigated by X-ray Doffractopm (XRD) Ritjerfprd Backscattering Spectroscopy (RBS) and X-ray Diffraction(XRD) Rutherford Backscattering Spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) The results show that thestructure of the prepared films exhibit a rutile phase structure wit high(200) orientation and the O/Ti ratio of the titanium oxide films was about 2:1 XPS anlysis shows that $Ti^{2+},Ti^{3+}\;and\;Ti^{4+}$ chemical states exist on the titanium oxide films. the blood compatibility of the titanium oxide films was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide films improved significantly and better than that of LTI-carbon which was widely used to fabricate artificial heart valve.

  • PDF

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung;Hwang, Deok Rok;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.76-80
    • /
    • 2019
  • The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.

ON THE INTERFACE BETWEEN TITANIUM METAL AND BONE TISSUE -Ti-ion leakage from bone and implant interface(1)- (티타늄금속과 골조직의 계면에 관한 연구 -골과 임플란트 계면에서의 Ti-ion의 거동에 대하여(1)-)

  • Cho, Sung-Am;Jo, Kyung-Hun;Sur, Jo-Ryung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.354-357
    • /
    • 1995
  • The secondary ion of titanium from commercially pur titanium implant which installed at Rabbit tibia. Was analyzed by Secondary lon Mass Spectroscopy. And we detected about 3476 ppm ion from $10-50{\mu}m$ distance from interface.

  • PDF

Wear Properties of Biocompatible Ti Implant due to Nitrogen Ion Implantation (질소이온주입에 따른 생체안전성 티타늄 임플란트의 마모특성)

  • 최종운;손선희;변응선;정용수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.126-134
    • /
    • 1999
  • In this study, plasma source ion implantation was used to improve the wear properties of biocompatible titanium implant. In order to observe the effect of ion energy and dose on wear property of titanium implant, pin-on-disk type wear tests in Hank's solution were carried out. The friction coefficient of ion implanted specimens were increased from 0.47 to 0.65 under high energy and ion dose conditions. As increasing ion energy and ion dose, the amount of wear was reduced.

  • PDF

Color Enhancement of Titanium with Nitrogen ion Implantation (질소이온주입을 이용한 티타늄 발색 향상)

  • 송오성;이기영;이정임
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • We implanted $N^+ion$ into TiO$_2$/Ti substrates with 70 keV by varying dose of 0, 2, 5, and $10{\times}10^{17}/cm$^2$$. In addition, $N^+ion$implanted TiO$_2$ specimens were annealed at $600^{\circ}C$ for 2 hours in Atmosphere. We investigated the color evolution, surface roughness, and hardness of specimens with doses. We report that the color changed from white into dark-yellow as dose increased. ion implanted surfaces became smooth when they were annealed. Moreover, hardness increased up to 10% when we annealed ion implanted TiO$_2$. Our results imply that we may enhanced titanium color and surface hardness.

  • PDF

Studies on Determination of Titanium from Ilmenite by Polarographic Method (Polarography 에 依한 Titanium 의 定量에 關한 硏究)

  • Kim, Hwang-Am;Kim, Chan-Kuk
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.10-13
    • /
    • 1962
  • Titanium in solution of EDTA (Ethylenediaminetetraacetic acid) yield well-defined, reversible polarographic waves. In this report, a polarographic method for rapid determination of titanium in the Korean ilmenite was proposed, This polarographic method is based on the measurement of polarogram in the supporting electrolyte of EDTA. As the pH is increased the wave become more irreversible the diffusion current are diminished, and the half wave potential become more negative. In spite of the complication arising from numerous titanium species, in 0.2 M of EDTA, pH 6.3, the titanium waves are reproducible and analytically useful. In this medium titanium ion give well-defined reduction wave, and the half wave potential were -0.61V vs S.C.E. at pH 6.3. At the same time, the wave had a linear relationship between the concentration of titanium ion and the wave height. The Korean ilmenites were analyzed by this method and satisfactory results were obtained.

  • PDF

Titanium Acetylacetonate as an Excellent Ion-Carrier in Construction of Iodide Sensor

  • Ganjali, Mohammad Reza;Daftari, Azadeh;Mizani, Farhang;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • Titanium acetylacetonate was used in the construction of a PVC-based membrane electrode. This sensor shows very good selectivity for iodide ion over a wide variety of common inorganic and organic anions. It exhibits Nernstian behavior with a slope of 59.1 mV per decade. The working concentration ranges of the sensor are with a detection limit of $3.0\;{\times}\;10^{-6}\;M$. The response time of the sensor is very fast (<8 s), and can be used for at least twelve weeks in the pH range of 4.0-9.2. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutylphthalate, 3% titanium acetylacetonate and 2% hexadecyltrimethylammonium bromide. The proposed sensor was successfully applied as an indicator electrode for titration of iodide with silver ion.