Effect of Titanium-Ion on the Growth of Various Bacterial Species

  • Yu, Tae-Shick (Department of Microbiology, College of Natural Science, Keimyung University)
  • Published : 2004.03.01

Abstract

There are a number of studies that explain the metabolism and roles of metallic titanium and titanium-ion. One of the most intriguing results from these studies is the finding of metallic titanium having no bacteriostatic effects on oral bacterial species. In this research, the effects of titanium-ion on the growth of twenty-two bacterial species, some of which are commonly found in foods such as yoghurt, kimchi, and soy fermented products, were investigated. All but two bacteria, Escherichia coli and Pseudomonas aeruginosa appeared to be sensitive to titanium-ion. These two species were grown on 360 $\mu\textrm{g}$/$m\ell$ of titanium-ions, and they were found to be resistant to the titanium-ion. Both the wild-type and plasmid-cured E. coli showed good growth in a medium with 200 $\mu\textrm{g}$/$m\ell$ of titanium-ions. These results suggest that titanium-resistance was independent from the effects of the plasmid in E. coli.

Keywords

References

  1. Appl. Environ. Microbiol. v.33 Sensitivity of various bacteria, including Actinomycetes, and fungi to cadmium and the influence of pH on sensitivity Babich,H.;G.Stotzky
  2. J. Bacteriol. v.155 Tn5 insertion mutations in the mercuric ion resistance genes dervied from plasmid R100 Babich,N.;S.Silver;T.J.Foster
  3. Nucleic Acids Res. v.7 A rapid alkaline extraction procedure for screening recombinant plasmid DNA Birnboim,L.J.;J.Doly. https://doi.org/10.1093/nar/7.6.1513
  4. Revue de Metallurgie Titanium and titanium alloys, biomaterials of preference. Memoires et Etudes Scientifiques Breame,J.
  5. Int. J. Oral Maxillofac. Implants. v.4 Comparision of titanium-tanta-lum and titanium-niobium alloys for application as dental implants Breme,J.;V.Wadewitz
  6. J. Bacteriol. v.177 The ars oeron of Escherichia coli confers arsenical and antimonial resistance Carlin,A.;W.Shi;S.Dey;B.P.Dey. https://doi.org/10.1128/jb.177.4.981-986.1995
  7. J. Bacteriol. v.112 Genetic basis of the biodegradation of salicylated in Pseudomonas Chakrabarty,A.M.
  8. Am. Naturalist v.85 A survey of chemicals for mutagenic action on E. coli. Demerec,M.;G.Bertani;H.Flint https://doi.org/10.1086/281660
  9. Chir. Dent. France. v.457 Biocompatibilite du Titane de ses alliages Elagli,K.;H.G.Hildebrand;G.Hamme
  10. Innov.Tech. Biol. Med. v.12 Evaluation de la tenue a la corrosion du titane en milieu salive artificielle Elagli,K.;M.Traisnel;H.F.Hildebrand
  11. Biomaterials v.13 In vitro effects of titanium powder on oral bacteria Elagli,K.;C.Neut;C.Romond;H.F.Hildebrand https://doi.org/10.1016/0142-9612(92)90090-B
  12. Arch. Pathol. v.94 Pulmonary depositsof titanium dioxide in man Elo,R.;K.Maatta,E.Uksila;A.U.Arstila
  13. Microb. Ecol. v.4 Microorganisms and heavy metal toxicity Gadd,G.M.;A.J.Griffiths https://doi.org/10.1111/j.1574-6968.1978.tb02885.x
  14. Scand. J. Work Environ.Health. v.13 Abnomalities of pulmonary function and pleural disease among titanium metal production workes Garabrant,D.H.;L.J.Fine;C.Oliver;L.Bernstein;J.M.Peters https://doi.org/10.5271/sjweh.2087
  15. Proc. Natl. Acad. Sci. USA, v.89 Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus cureus plasmid pI258 Ji,G.;S.Silver https://doi.org/10.1073/pnas.89.20.9474
  16. J. Med. Microbiol. v.27 The in vitro effect of a titanium implant on oral microflora: Comparison with otehr metallic compounds Joshi,R.J.;A.Eley. https://doi.org/10.1099/00222615-27-2-105
  17. Biosci. Biotechnol. Biochem. v.65 Involvement of caspase-3 in apoptosis induced by Viscum album var. coloratum agglutinin in HL-60 cell. Lyu,S.Y.;W.B.Park;K.H.Choi;W.H.Kim. https://doi.org/10.1271/bbb.65.534
  18. Arch. Pathol. v.87 Chrmosome damage in experimental lead poisoning Muro,L.A.;R.A.Goyer.
  19. Proc. Natl. Acad. Sci. USA, v.86 Cadmium resistance from Staphylococcus aureus plasmid pI258 cad A gene results from a cadmium effux ATP ase. Nucifora,G.;L.Chu;T.K.Mitra;S.Silver https://doi.org/10.1073/pnas.86.10.3544
  20. Phipps, D.A. Metals and Metabolism, Clarendon, Oxford, 1976
  21. Metals and Metabolism Phipps.D.A.
  22. Br. J. Ind. Med. v.43 Granulomatous disease associated with plumonary deposition of titanium Redline,S.;B.P.Bama;J.F.TomashefskiJr;J.L.Abraham
  23. J.Microbiol v.40 Heavy metal biosorption and its significance to metal tolerance of Streptomycetes Rho,J.Y.;J.H.KIm.
  24. J. Bacteriol. v.173 A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. Yoon,K.P.;S.Silver https://doi.org/10.1128/jb.173.23.7636-7642.1991
  25. J.Microbiol. Bacteriol. v.4 Effects of R100 mutant MerR on regulation of mer operon from Shigella flexneri. Yoon,K.P.
  26. Kor. Jour. Microbiol. v.24 Characterization of a cadmium-ion tolerant strain of Hansenula anomala. Yu,T.S.;H.I.Song;K.T.Chung
  27. J. Appl. Microbiol. Biotech. v.18 Mechanism of cadmium accumulation into the cell of cadmium-ion tolerant yeast. Yu,T.S.;H.I.Song;K.T.Chung