• 제목/요약/키워드: tissue-specific transcription

검색결과 124건 처리시간 0.025초

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong;Oh, Sumin;Yoo, Kyung Hyun
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.169-177
    • /
    • 2017
  • Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

Action Mechanism of Enhancers for Activating Gene Transcription

  • Yea Woon Kim;AeRi Kim
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.103-108
    • /
    • 2023
  • Enhancers are cis-elements to regulate transcription of cell/tissue-specific genes in multicellular organisms. These elements locate in upstream or downstream regions of target genes and are found in a long distance up to 100 Kb in some cases. Transcription factors and coactivators bind to enhancers in a chromatin environment. Enhancers appear to facilitate the transcription of target genes by communicating with promoters and activating them. As transcription activation mechanism of enhancers, chromatin looping between enhancers and promoters, tracking of enhancer activity to promoters along the intervening regions, and movement of enhancers and promoters into transcription condensates have been suggested based on various molecular and cellular biology studies. These mechanisms are likely to act together rather than exclusive each other for gene transcription. Understanding of enhancer action mechanism may provide a way to regulate the transcription of cell/tissue-specific genes relating with aging or various diseases.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

유전자 알고리즘을 이용한 Promoter 예측 (Promoter Prediction using Genetic Algorithm)

  • 오민경;김창훈;김기봉;공은배;김승목
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.12-14
    • /
    • 1999
  • Promoter는 transcript start site 앞부분에 위치하여 RNA polymerase가 높은 친화성을 보이며 바인당하는 DNA상의 특별한 부위로서 여기서부터 DNA transcription이 시작된다. function이나 tissue-specific gene들의 그룹별로 그 promoter들의 특이한 패턴들의 조합을 발견함으로써 Specific한 transcription을 조절하는 것으로 알려져 있어 promoter로 인한 그 gene의 정보를 어느 정도 알 수가 있다. 사람의 housekeeping gene promoter들을 EPD(eukaryotic promoter database)와 EMBL nucleic acid sequence database로부터 수집하여 이것들 간에 의미 있게 나타나는 모든 패턴들을 optimization algorithm으로 알려진 genetic algorithm을 이용해서 찾아보았다.

  • PDF

Predicting tissue-specific expressions based on sequence characteristics

  • Paik, Hyo-Jung;Ryu, Tae-Woo;Heo, Hyoung-Sam;Seo, Seung-Won;Lee, Do-Heon;Hur, Cheol-Goo
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.250-255
    • /
    • 2011
  • In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

일시적 발현을 통한 토마토 S RNase gene promoter의 발현 양상 (Expression Pattern of S RNase Gene Promoter in Various Floral Tissues of Lycopersicon peruvianum)

  • CHUNG, Il Sun;SHIN Dong Ill;CHUNG, Il Kyung
    • 식물조직배양학회지
    • /
    • 제25권4호
    • /
    • pp.237-243
    • /
    • 1998
  • 야생종 토마토의 자가불화합성에 관여하는 S RNase유전자의 조직특이적 발현 양상을 조사하기 위하여 $\textrm{S}_{11}$$\textrm{S}_{12}$ allele에 속하는 RNase 유전자의 Promoter영역에 대한 염기 서열을 비교 분석한 결과, 전사개시점에서 상류측으로 350-500bp사이에서 양쪽 allele의 Promoter간에 상동성을 나타내는 3부분과 direct repeat sequence를 발견하였다. Promoter영역에서 이러한 부분이 S RNase 유전자가 화주특이적으로 발현하는데 영향을 줄 것으로 예상하고, 이들 영역을 중심으로 6종류의 deletion fragment를 만들어 GUS 유전자에 연결하여, 토마토의 생식조직에 microprojectile bombardment를 수행하였다. 그 결과 토마토 자가불화합성에 관여하는 S RNase 유전자의 promoter는 TATA box를 포함한 127 bP만으로도 화주조직 특이적 발현을 조절할 수 있었다. 또한 S RNase 유전자의 promoter영역내에는 토마토 화변, 자방과 심피조직들에서 negative 혹은 positive로 유전자의 발현을 유도하는 부분이 발견되었다.

  • PDF

폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites (DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene)

  • 이용철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제48권6호
    • /
    • pp.879-886
    • /
    • 2000
  • 연구배경: 폐특이 전사조절 유전자인 Thyroid Transcription Factor-1 (TTF-1)유전자는 폐에 선택적인 유전자의 표현의 조절에 중요한 전사인자로 작용하고 폐의 발생에서 morphogenic protein으로서 작용한다. 그러나 현재까지 이 TTF-1 유전자의 전사인자에 대한 연구는 거의 미미하다. DNase 1 hypersensitive(DH) regions은 활동적인 염색체에 대한 중요한 표식자이며 유전자를 조절하는 많은 DNA sequences와 밀접한 관계가 있다. 방법 : 추정적인 distal regulatory elements를 밝혀 내기 위해서 TTF-1을 표현하는 인간의 폐선암 세포주인 NCI-H441을 사용해 DNase 1 hypersensitive site assay를 이용하였다. 결과 : TTF-1 유전자에는 전사의 시작부위에서 +150, -450, -800, 그리고 -1500 base pair부위에 4곳의 DH sites가 있음을 할 수 있었다. 결론 : 이상의 결과로 전사 조절부위가 TTF-1 유전자 내에 그리고 5' prime부위에 위치함을 추정할 수 있었다.

  • PDF

Molecular Cloning of Chicken Major Histocompatibility Complex Class II Molecules

  • Sung, Aree-Moon
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.331-342
    • /
    • 1992
  • The chicken major histocompatibility complex (MHC), the B complex, is beginning to be analyzed at the DNA level. Inbred lines of chickens have been reported to possess 3~5 MHC class II genes. To further analyzed the molecular structure of the chicken MHC class II genes, cDNA clones coding for chicken MHC class II (B-L) ${\beta}$ chain molecules were isolated from chicken spleen and liver. Tissue-specific transcription of B-L ${\beta}$genes was studied by Northern blot analysis. A high level of expression was detected for spleen poly(A)$^+$ RNA whereas a faint signal was detected for liver poly(A)$^+$ RNA. Twenty-nine cDNA clones were isolated from the spleen and eight cDNA clones were isolated from the liver. Based on restriction maps, most clones could be clustered into one family of genes. Four cDNA clones were sequenced (S7, S10 and S19 from the spleen and L1, which was identical to S19, from the liver). Complete amino acid sequences of B-L ${\beta}$ chain molecules were predicated from the nucleotide sequences of the cDNA clones. Although both the nature and the location of the conserved residues were similar in chicken and mammalian sequences, some species-specific differences were found, suggesting that the structures of the B-L molecules are similar, but not identical to their mammalian counterparts.

  • PDF

SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체 (Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor)

  • 이선희;관수영;김대기
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF)는 비만세포의 분화를 조절하는 중요한 전사인자이다. 특히 MITF는 결합조직형 비만세포에서 일반적으로 발현하는 비만세포 특이적 세린 단백분해효소의 일종인 mMCP-6 유전자의 전사를 조절한다. 본 연구는 마우스 골수유래 배양비만세포에서 mMCP-6 유전자의 전사를 조절하는 MITF이형체를 규명하였다. MITF 이형체들의 발현은 RT-PCR로 확인하였다. IL-3존재 하에서 배양한 점막형 비만세포들은 MITF-A,-E, -H, -Mc 등이 발현하였다. 반면에 SCF존재 하에서 배양한 결합조직형 비만세포들은 MITF-A가 발현하였다. MITF이형체를 과발현시키면 NIH-3T3 세포에서 mMCP-6 promoter를 통한 luciferase 활성을 증가시키고, MC/9 비만세포주에서는 증가된 mMCP-6발현을 유도하였다. 더불어 비만세포에서의 mMCP-6 발현은 MITF-A 고갈로 인하여 유의적으로 억제되었다. MITF-A의 전사활성과 DNA결합은 MITF-E, -H, -Mc 등의 타 이형체들의 결과와 유사하였다. 따라서 본 연구의 결과들은 MITF-A가 마우스 결합조직형 비만세포에서 발현하여 mMCP-6 전사를 조절하는 중요한 이형체임을 제시한다.

Transactivators for the Odontoblast-specific Gene Targeting

  • Chung, Kyung-Chul;Kim, Tak-Heun;Yang, Yeon-Mee;Baek, Jin-A;Ko, Seung-O;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.105-113
    • /
    • 2009
  • Dentin, a major component of teeth, is formed by odontoblasts which produce the dentin matrix beneath the dental epithelium and induce the mineralization of dentin. To date, the biochemical properties of dentin matrix proteins have been well characterized, but upstream regulators of these proteins are not yet well known. Recently in this regard, several transcription factors have been identified as potential regulators of matrix proteins. Most transcription factors are generally involved in diverse biological processes and it is essential to identify those that are odontoblast-specific transactivators to further understand the process of dentin formation. We thus analyzed the expression pattern of dentin matrix proteins and the activities of established transactivators containing a Cre-locus. Expression analyses using in situ hybridization showed that dentin matrix proteins are sequentially expressed in differentiating odontoblasts, including type-I collagen, Dmp-1 and Dspp. The activities of the transactivators were evaluated using ${\beta}$-galactosidase following the generation of double transgenic mice with each transactivator and the ROSA26R reporter line. The ${\beta}$-galactosidase activity of each transactivator paralled the expression of the matrix proteins. These results thus showed that these transactivators could be utilized for odontoblastspecific conditional gene targeting. In addition, time- and tissue-specific conditional gene targeting might also be achieved using a combination of these transactivators. Odontoblast-specific conditional gene targeting with these transactivators will likely also provide new insights into the molecular mechanisms underlying dentin formation.