DOI QR코드

DOI QR Code

Action Mechanism of Enhancers for Activating Gene Transcription

  • Yea Woon Kim (Department of Biomedical Laboratory Science, College of Healthcare Medical Science and Engineering, Inje University) ;
  • AeRi Kim (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2023.08.16
  • Accepted : 2023.09.22
  • Published : 2023.09.30

Abstract

Enhancers are cis-elements to regulate transcription of cell/tissue-specific genes in multicellular organisms. These elements locate in upstream or downstream regions of target genes and are found in a long distance up to 100 Kb in some cases. Transcription factors and coactivators bind to enhancers in a chromatin environment. Enhancers appear to facilitate the transcription of target genes by communicating with promoters and activating them. As transcription activation mechanism of enhancers, chromatin looping between enhancers and promoters, tracking of enhancer activity to promoters along the intervening regions, and movement of enhancers and promoters into transcription condensates have been suggested based on various molecular and cellular biology studies. These mechanisms are likely to act together rather than exclusive each other for gene transcription. Understanding of enhancer action mechanism may provide a way to regulate the transcription of cell/tissue-specific genes relating with aging or various diseases.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Alexander JM, Guan J, Li B, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife. 2019. 8: e41769.
  2. Benabdallah NS, Williamson I, Illingworth RS, et al. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell. 2019. 76: 473-484.  https://doi.org/10.1016/j.molcel.2019.07.038
  3. Boija A, Klein IA, Sabari BR, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018. 175: 1842-1855.  https://doi.org/10.1016/j.cell.2018.10.042
  4. Boyle AP, Davis S, Shulha HP, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008. 132: 311-322.  https://doi.org/10.1016/j.cell.2007.12.014
  5. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 1980. 22: 479-488.  https://doi.org/10.1016/0092-8674(80)90358-X
  6. Chien R, Zeng W, Kawauchi S, et al. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression. J Biol Chem. 2011. 286: 17870-17878.  https://doi.org/10.1074/jbc.M110.207365
  7. Cho WK, Spille JH, Hecht M, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018. 361: 412-415.  https://doi.org/10.1126/science.aar4199
  8. Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010. 107: 21931-21936.  https://doi.org/10.1073/pnas.1016071107
  9. de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013. 502: 499-506.  https://doi.org/10.1038/nature12753
  10. de Wit E, de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 2012. 26: 11-24.  https://doi.org/10.1101/gad.179804.111
  11. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002. 295: 1306-1311.  https://doi.org/10.1126/science.1067799
  12. Deng W, Lee J, Wang H, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 2012. 149: 1233-1244.  https://doi.org/10.1016/j.cell.2012.03.051
  13. Drissen R, Palstra RJ, Gillemans N, et al. The active spatial organization of the β-globin locus requires the transcription factor EKLF. Genes Dev. 2004. 18: 2485-2490.  https://doi.org/10.1101/gad.317004
  14. Hadjur S, Williams LM, Ryan NK, et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009. 460: 410-413.  https://doi.org/10.1038/nature08079
  15. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 2013. 23: 1210-1223.  https://doi.org/10.1101/gr.152306.112
  16. Hatzis P, Talianidis I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol Cell. 2002. 10: 1467-1477.  https://doi.org/10.1016/S1097-2765(02)00786-4
  17. Henninger JE, Oksuz O, Shrinivas K, et al. RNA-mediated feedback control of transcriptional condensates. Cell. 2021. 184: 207-225.  https://doi.org/10.1016/j.cell.2020.11.030
  18. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A phase separation model for transcriptional control. Cell. 2017. 169: 13-23.  https://doi.org/10.1016/j.cell.2017.02.007
  19. Hsieh CL, Fei T, Chen Y, et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A. 2014. 111: 7319-7324.  https://doi.org/10.1073/pnas.1324151111
  20. Jackson DA, Iborra FJ, Manders EM, Cook PR. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell. 1998. 9: 1523-1536.  https://doi.org/10.1091/mbc.9.6.1523
  21. Kagey MH, Newman JJ, Bilodeau S, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010. 467: 430-435.  https://doi.org/10.1038/nature09380
  22. Kim YW, Kang J, Kim A. Hematopoietic/erythroid enhancers activate nearby target genes by extending histone H3K27ac and transcribing intergenic RNA. FASEB J. 2023. 37: e22870. 
  23. Lee JH, Wang R, Xiong F, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell. 2021. 81: 3368-3385.  https://doi.org/10.1016/j.molcel.2021.07.024
  24. Lee R, Kang MK, Kim YJ, et al. CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res. 2022. 50: 207-226.  https://doi.org/10.1093/nar/gkab1242
  25. Lettice LA, Heaney SJH, Purdie LA, et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet. 2003. 12: 1725-1735.  https://doi.org/10.1093/hmg/ddg180
  26. Li L, Freudenberg J, Cui K, et al. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood. 2013a. 121: 4575-4585.  https://doi.org/10.1182/blood-2013-01-479451
  27. Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013b. 498: 516-520.  https://doi.org/10.1038/nature12210
  28. Lopez-Perrote A, Alatwi HE, Torreira E, et al. Structure of Yin Yang 1 oligomers that cooperate with RuvBL1-RuvBL2 ATPases. J Biol Chem. 2014. 289: 22614-22629.  https://doi.org/10.1074/jbc.M114.567040
  29. Moore JE, Purcaro MJ, Pratt HE, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020. 583: 699-710.  https://doi.org/10.1038/s41586-020-2493-4
  30. Osborne CS, Chakalova L, Brown KE, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004. 36: 1065-1071.  https://doi.org/10.1038/ng1423
  31. Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013. 152: 157-171.  https://doi.org/10.1016/j.cell.2012.12.018
  32. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. The β-globin nuclear compartment in development and erythroid differentiation. Nat Genet. 2003. 35: 190-194.  https://doi.org/10.1038/ng1244
  33. Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev. 2013. 113: 8683-8705.  https://doi.org/10.1021/cr300513p
  34. Schoenfelder S, Sexton T, Chakalova L, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010. 42: 53-61.  https://doi.org/10.1038/ng.496
  35. Song SH, Hou C, Dean A. A positive role for NLI/Ldb1 in long-range β-globin locus control region function. Mol Cell. 2007. 28: 810-822.  https://doi.org/10.1016/j.molcel.2007.09.025
  36. Spilianakis CG, Flavell RA. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol. 2004. 5: 1017-1027.  https://doi.org/10.1038/ni1115
  37. Thein SL, Wood WG. The molecular basis of β-thalassemia, δβ-thalassemia, and hereditary persistence of fetal hemoglobin. In: Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press. 2009: 323-356. 
  38. Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature. 2012. 489: 75-82.  https://doi.org/10.1038/nature11232
  39. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell. 2002. 10: 1453-1465.  https://doi.org/10.1016/S1097-2765(02)00781-5
  40. Vakoc CR, Letting DL, Gheldof N, et al. Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005. 17: 453-462.  https://doi.org/10.1016/j.molcel.2004.12.028
  41. Wadman IA, Osada H, Grutz GG, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997. 16: 3145-3157.  https://doi.org/10.1093/emboj/16.11.3145
  42. Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005. 19: 631-642.  https://doi.org/10.1016/j.molcel.2005.07.018
  43. Weintraub AS, Li CH, Zamudio AV, et al. YY1 is a structural regulator of enhancer-promoter loops. Cell. 2017. 171: 1573-1588.  https://doi.org/10.1016/j.cell.2017.11.008
  44. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013. 153: 307-319.  https://doi.org/10.1016/j.cell.2013.03.035
  45. Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res. 2014. 42: 4283-4293.  https://doi.org/10.1093/nar/gku072
  46. Zhu X, Ling J, Zhang L, Pi W, Wu M, Tuan D. A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res. 2007. 35: 5532-5544.  https://doi.org/10.1093/nar/gkm595