DOI QR코드

DOI QR Code

Predicting tissue-specific expressions based on sequence characteristics

  • Paik, Hyo-Jung (Plant Systems Engineering Center, KRIBB) ;
  • Ryu, Tae-Woo (Red Sea Laboratory for Integrative Systems Biology, Computational Biosciences Research Center, Division of Chemical & Life Sciences and Engineering, King Abdullah University of Science and Technology (KAUST)) ;
  • Heo, Hyoung-Sam (Plant Systems Engineering Center, KRIBB) ;
  • Seo, Seung-Won (Plant Systems Engineering Center, KRIBB) ;
  • Lee, Do-Heon (Department of Bio and Brain Engineering, KAIST) ;
  • Hur, Cheol-Goo (Plant Systems Engineering Center, KRIBB)
  • Received : 2010.12.29
  • Accepted : 2011.01.20
  • Published : 2011.04.30

Abstract

In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

Keywords

References

  1. Zhu, J., He, F., Hu, S. and Yu, J. (2008) On the nature of human housekeeping genes. Trends Genet. 24, 481-484. https://doi.org/10.1016/j.tig.2008.08.004
  2. Butte, A. J., Dzau, V. J. and Glueck, S. B. (2001) Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". Physiol. Genomics 7, 95-96. https://doi.org/10.1152/physiolgenomics.2001.7.2.95
  3. Andersson, T., Simonyte, K., Andrew, R., Strand, M., Buren, J., Walker, B. R., Mattsson, C. and Olsson, T. (2009) Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women. PLoS One 4, e8475. https://doi.org/10.1371/journal.pone.0008475
  4. Sopasakis, V. R., Liu, P., Suzuki, R., Kondo, T., Winnay, J., Tran, T. T., Asano, T., Smyth, G., Sajan, M. P., Farese, R. V., Kahn, C. R. and Zhao, J. J. (2010) Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab. 11, 220-230. https://doi.org/10.1016/j.cmet.2010.02.002
  5. Bossi, A. and Lehner, B. (2009) Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260.
  6. Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. and Ruppin, E. (2008) Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003-1010. https://doi.org/10.1038/nbt.1487
  7. Morozova, O. and Marra, M. A. (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255-264. https://doi.org/10.1016/j.ygeno.2008.07.001
  8. Stephan, A. and Jean-Michel, C. (1997) The significance of digital gene expression profiles. Genome Res. 7, 986-995. https://doi.org/10.1101/gr.7.10.986
  9. Noh, S.-J., Lee, K., Paik, H. and Hur, C.-G. (2006) TISA: tissue-specific alternative splicing in human and mouse genes. DNA Res. 13, 229-243. https://doi.org/10.1093/dnares/dsl011
  10. Rao, A., Hero, A. O., 3rd, States, D. J. and Engel, J. D. (2007) Motif discovery in tissue-specific regulatory sequences using directed information. EURASIP J. Bioinform. Syst. Biol. 2007, 13853.
  11. Farre, D., Bellora, N., Mularoni, L., Messeguer, X. and Alba, M. M. (2007) Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol. 8, R140. https://doi.org/10.1186/gb-2007-8-7-r140
  12. Yamashita, R., Suzuki, Y., Sugano, S. and Nakai, K. (2005) Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene 350, 129-136. https://doi.org/10.1016/j.gene.2005.01.012
  13. Zhang, L. and Li, W.-H. (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol. Biol. Evol. 21, 236-269. https://doi.org/10.1093/molbev/msh010
  14. Zhixi, S., Yong, H. and Xun, G. (2007) Tissue-driven hypothesis with gene ontology (GO) analysis. Annals of Biomedical Engineering 35, 1088-1094 https://doi.org/10.1007/s10439-007-9269-y
  15. Cohen-Gihon, I., Lancet, D. and Yanai, I. (2005) Modular genes with metazoan-specific domains have increased tissue specificity. Trends Genet. 21, 210-213. https://doi.org/10.1016/j.tig.2005.02.008
  16. Eisenberg, E. and Levanon, E. Y. (2003) Human housekeeping genes are compact. Trends Genet. 19, 362-365. https://doi.org/10.1016/S0168-9525(03)00140-9
  17. Smith, A. D., Sumazin, P., Xuan, Z. and Zhang, M. Q. (2006) DNA motifs in human and mouse proximal promoters predict tissue-specific expression. PNAS 103, 6275-6280. https://doi.org/10.1073/pnas.0508169103
  18. Ferrari, L. D. and Aitken, S. (2006) Mining housekeeping genes with a Naive Bayes classifier. BMC Genomics 7, 277. https://doi.org/10.1186/1471-2164-7-277
  19. Breiman, L. (2001) Random forests. Machine Learning 45, 5-32. https://doi.org/10.1023/A:1010933404324
  20. Smith, A. D., Sumazin, P. and Zhang, M. Q. (2007) Tissuespecific regulatory elements in mammalian promoters. Mol. Sys. Biol. 3, 73.
  21. Hsiao, L.-L., Dangond, F., Yoshida, T., Hong, R., Clark, R. V., Haverty, P., Weng, Z., Mutter, G. L., Frosch, M. P., Donald, M. E. M., Milford, E. L., Crum, C. P., Bueno, R., Pratt, R. E., Mahadevappa, M., Warrington, J. A. and Stephanopoulos, G. (2001) A compendium of gene expression in normal human tissues. Physiol. Genomics 7, 97-104. https://doi.org/10.1152/physiolgenomics.00040.2001
  22. Warrington, J. A., Nair, A., Mahadevappa, M. and Tsyganskaya, M. (2000) Comparision of human adult and fetal expression and identification of 535 housekeeping/ maintenance genes. Physiol. Genomics 2, 143-147. https://doi.org/10.1152/physiolgenomics.2000.2.3.143
  23. Ge, X., Yamamoto, S., Tsutsumi, S., Midorikawa, Y., Ihara, S., Wang, S. M. and Aburatani, H. (2005) Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics. 86, 127-141. https://doi.org/10.1016/j.ygeno.2005.04.008
  24. Pao, S.-Y., Lin, W.-L. and Hwang, M.-J. (2006) In silico identification and comparative analysis of differnetially expressed genes in human and mouse tissues. BMC Genomics 21, 86.
  25. Shyamsundar, R., Kim, Y. H., Higgins, J. P., Montgomery, K., Jorden, M., Sethuraman, A., van de Rijin, M., Botstein, D., Brown, P. O. and Pollack, J. R. (2005) A DNA microarray survey of gene expression in normal human tissues. Genome Biol. 6, R22. https://doi.org/10.1186/gb-2005-6-3-r22
  26. Zadissa, A., McEwan, J. C. and Brown, C. M. (2007) Inference of transcriptional regulation using gene expression data from the bovine and human genomes. BMC Genomics 8, 265. https://doi.org/10.1186/1471-2164-8-265
  27. Lin, K., Zhu, L. and Zhang, D.-Y. (2006) An initial strategy for comparing proteins at the domain architecture level. Bioinformatics 22, 2081-2086. https://doi.org/10.1093/bioinformatics/btl366
  28. Schwartz, D. T. (1967) The relation of cirrhosis of the liver to renal hypertension. A review of 639 autopsied cases. Ann. Intern. Med. 66, 862-869. https://doi.org/10.7326/0003-4819-66-5-862
  29. Troup, G. M., Wagner, I. and Walford, R. L. (1966) Liver pigment, liver histidase, and renal lysozyme changes in relation to age in normal and irradiated Syrian hamsters. Radiat. Res. 29, 489-498. https://doi.org/10.2307/3572073
  30. Gadano, A., Moreau, R., Heller, J., Chagneau, C., Vachiery, F., Trombino, C., Elman, A., Denie, C., Valla, D. and Lebrec, D. (1999) Relation between severity of liver disease and renal oxygen consumption in patients with cirrhosis. Gut 45, 117-121. https://doi.org/10.1136/gut.45.1.117
  31. Malorni, W., Barcellona, P. S., Campana, A. and De Martino, C. (1981) Relationship between brain cortex and testis maturation rate in two inbred strains of mice. Ric. Clin. Lab. 11, 247-257.
  32. Wang, Y., Zhang, X. S. and Xia, Y. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 37, 5943-5958. https://doi.org/10.1093/nar/gkp625
  33. Hu, M. C., Mo, R., Bhella, S., Wilson, C. W., Chuang, P. T., Hui, C. C. and Rosenblum, N. D. (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133, 569-578. https://doi.org/10.1242/dev.02220
  34. Ponger, L. and Mouchiroud, D. (2002) CpGProD: Identifying CpG islands associated with transciption start sites in large genomic mammalian sequences. Bioinformatics 18, 631-633. https://doi.org/10.1093/bioinformatics/18.4.631
  35. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. and Lopez, R. (2005) InterPro-Scan: Protein domains identifier. Nucleic Acids Res. 33, 116-120.
  36. Hughes, J. D., Estep, P. W., Tavazoie, S. and Church, G. M. (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in saccharomyces cerevisiae. J. Mol. Biol. 296, 1205-1214. https://doi.org/10.1006/jmbi.2000.3519
  37. Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A. E., Kel- Margoulis, O. V., Kloos, D.-U., Land, S., Lewicki-Potapov, B., Michael, H., Münch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S. and Wingender, E. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374-378. https://doi.org/10.1093/nar/gkg108