Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.10.1348

Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor  

Lee, Sun-Hee (Department of Immunology, Chonbuk National University Medical School)
Guan, Xiu-Ying (Department of Immunology, Chonbuk National University Medical School)
Kim, Dae-Ki (Department of Immunology, Chonbuk National University Medical School)
Publication Information
Journal of Life Science / v.18, no.10, 2008 , pp. 1348-1354 More about this Journal
Abstract
mi transcription factor (MITF) is important in regulating the differentiation of mast cells. In particular, MITF regulates the transcription of the mouse mast cell-specific serine protease (mMCP)-6 gene, which is generally expressed by the connective tissue-type of mast cells. In this study, we investigated alternative isoforms of MITF that regulate transcription of the mMCP-6 gene in bone marrow-derived cultured mast cells in mice. The expression of MITF isoforms was examined by RT-PCR. We observed that MITF-A, -E, -H and -Mc were expressed by mucosal-type mast cells cultured in the presence of IL-3, whereas the connective tissue-type mast cells cultured in the presence of stem cell factor (SCF) expressed MITF-A. Overexpression of MITF isoforms increased luciferase activity through the mMCP-6 promoter in NIH-3T3 cells and elevated the level of mMCP-6 expression in the MC/9 mast cell line. Moreover, mMCP-6 expression in mast cells was significantly inhibited by the depletion of MITF. The transcriptional activity and DNA binding of MITF-A was comparable to that of MITF isoforms, including MITF-E, -H, and -Mc. Our results therefore suggest that MITF-A may be an important isoform of MITF in regulating the transcription of mMCP-6 in mouse connective tissue mast cells.
Keywords
mi transcription factor; MITF-A; mMCP-6; mast cells; stem cell factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, Y. M., T. Jippo, D. K. Kim, Y. K. Kitamura, K. Tsujino, E. Morii, H. M. Kim, S. Adachi, Y. Nawa and U. Kitamura. 1998. Alteration of protease expression phenotype of mouse peritoneal mast cells by changing the microenvironment as demonstrated by in situ hybridization histochemistry. Am. J. Pathol. 153, 931-936.   DOI   ScienceOn
2 McNeil, H. P., R. Adachi and R. L. Stevens. 2007. Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense. J. Biol. Chem. 282, 20785-20789.   DOI   ScienceOn
3 Jippo, T., Y. M. Lee, Y. Katsu, K. Tsujino, E. Morii, D. K. Kim, H. M. Kim and Y. Kitamura. 1999. Deficient transcription of mouse mast cell protease 4 gene in mutant mice of mi/mi genotype. Blood 93, 1942-1950.
4 Kim, D. K. and Y. M. Lee. 2004. Requirement of c-jun transcription factor on the mouse mast cell protease (mMCP)-6 expression in the mast cells. Archi. Biochem. Biophys. 431, 71-78.   DOI   ScienceOn
5 Kitamura, Y. 1989. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59-76.   DOI   ScienceOn
6 Jippo, T., K. Tsujino, H. M. Kim, D. K. Kim, Y. M. Lee, Y. Nawa and Y. Kitamura. 1997. Expression of mast-cellspecific proteases in tissues of mice studied by in situ hybridization. Am. J. Pathol. 150, 1373-1382.
7 Morii, E. and K. Oboki. 2004. MITF Is necessary for generation of prostaglandin D2 in mouse mast cells. J. Biol. Chem. 279, 48923-48929.   DOI   ScienceOn
8 Miller, H. R. and A. D. Pemberton. 2002. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. J. Immunol. 105, 375-390.   DOI   ScienceOn
9 Ito, A., E. Morii, K. Maeyama, T. Jippo, D. K. Kim, Y. M. Lee, H. Ogihara, K. Hashimoto, Y. Kitamura and H. Nojima. 1998. Systematic method to obtain novel genes that are regulated by mi transcription factor: impaired expression of granzyme B and tryptophan hydroxylase in mi/mi cultured mast cells. Blood 91, 3210-3221.
10 Goding, C. R. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712-1728.
11 Hershey, C. L. and D. E. Fisher. 2005. Genomic analysis of the microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 347, 73-82.   DOI   ScienceOn
12 Friend, D. S., N. Ghildyal, K. F. Austen, M. F. Gurish, R. Matsumoto and R. L. Stevens. 1996. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J. Cell Biol. 135, 279-290.   DOI   ScienceOn
13 Fuse, N., K. Yasumoto, K. Takeda, S. Amae, M. Yoshizawa, T. Udono, K. Takahashi, M. Tamai, Y. Tomita, M. Tachibana and S. Shibahara. 1999. Identification of a distal enhancer for the melanocyte-specific promoter of the MITF Gene. J. Biochem. 126, 1043-1051.   DOI   ScienceOn
14 Amae, S., N. Fuse, K. Yasumoto, S. Sato, I. Yajima, H. Yamamoto, T. Udono, Y. K. Durlu, M. Tamai, K. Takahashi and S. Shibahara. 1998. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 247, 710-715.   DOI   ScienceOn
15 Takemoto, C. M., Y. J. Yoon and D. E. Fisher. 2002. The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. J. Biol. Chem. 277, 30244-30252.   DOI   ScienceOn
16 Hodgkinson, C. A., K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. A. Jenkins and H. Arnheiter. 1993. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404.   DOI   ScienceOn
17 Nadler, M. J., S. A. Matthews, H. Turner and J. P. Kinet. 2000. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv. Immunol. 76, 325-355.
18 Yajima, I., S. Sato, T. Kimura, K. Yasumoto, S. Shibahara, C. R. Goding and H. Yamamoto. 1999. An L1 element intronic insertion in the black-eyed white ($Mitf^{mi-bw}$) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum. Mol. Genet. 8, 1431-1441.   DOI   ScienceOn
19 Williams, C. M. and S. J. Galli. 2000. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847-859.   DOI   ScienceOn
20 Takeda, K., K. Yasumoto, N. Kawaquchi, T. Udono, K. Watanabe, H. Saito, K. Takahashi, M. Noda and S. Shibahara. 2002. Mitf-D, a newly identified isoform, expressed in the retinal pigment epithelium and monocyte- lineage cells affected by Mitf mutations. Biochim. Biophys. Acta 1574, 15-23.   DOI   ScienceOn
21 Tassabehji, M., V. E. Newton and A. P. Read. 1994. Waardenburg syndrome type 2 is caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet. 8, 251-255.   DOI   ScienceOn
22 Morii, E., T. Tsujimura, T. Jippo, K. Hashimoto, K. Kakebayashi, K. Tsujino, S. Nomura, M. Yamamoto and Y. Kitamura. 1996. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 2488-2494.
23 Ogihara, H., E. Morii, D. K. Kim, K. Oboki and Y. Kitamura. 2001. Inhibitory effect of the transcription factor encoded by the mutant mi microphthalmia allele on transactivation of mouse mast cell protease 7 gene. Blood 97, 645-651.   DOI   ScienceOn
24 Stevens, R. L. and K. F. Austen. 1989. Recent advances in the cellular and molecular biology of mast cells. Immunol. Today 10, 381-386.   DOI   ScienceOn
25 Steingrimsson, E. 1994. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet. 8, 256.   DOI   ScienceOn
26 Reynolds, D. S., D. S. Gurley, K. F. Austin and W. E. Serafin. 1991. Cloning of the cDNA and gene of mouse mast cell protease-6: transcription by progenitor mast cells and mast cells of the connective tissue subclass. J. Biol. Chem. 266, 3847-3853.
27 Pejler, G., M. Abrink, M. Ringvall and S. Wernersson. 2007. Mast Cell Proteases. Adv. Immunol. 95, 167-255.   DOI   ScienceOn
28 Oboki, K., E. Morii, T. R. Kataoka, T. Jippo and Y. Kitamura. 2002. Isoforms of mi transcription factor preferentially expressed in cultured mast cells of mice. Biochem. Biophys, Res. Commun. 290, 1250-1254.
29 Nakano, T., T. Sonoda, C. Hayashi, A. Yamatodani, Y. Kanayama, H. Asai, T. Yonezawa, Y. Kitamura and S. J. Galli. 1985. Fate of bone marrowderived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell deficient W/W$\upsilon$ mice: Evidence that cultured mast cells can give rise to both "connective tissue-type" and "mucosal"mast cells. J. Exp. Med. 162, 1025-1043.   DOI   ScienceOn