• 제목/요약/키워드: tissue-engineering

검색결과 1,851건 처리시간 0.025초

Monte Csrlo 시뮬레이션을 이용한 생체조직내의 광선량 측정 (Measuring the Light Dosimetry Within Biological Tissue Using Monte Carlo Simulation)

  • 임현수;구철희
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권2호
    • /
    • pp.199-204
    • /
    • 1999
  • 생체조직내의 정확한 광선량 측정이 PDT 치료의 효과에 중요한 영향을 주므로 본 연구에서는 광선량 측정을 위해서 Monte Carlo 시뮬레이션을 이용하였다. 실험에 사용한 계수는 실제 생체조직의 광학계수이고 위상함수는 Henyey-Greenstein 위상함수를 사용하였다. 결과는 깊이에 따른 Fluency rate의 변화로 나타내었으며 기존 이론과의 차이는 0.35%에 지나지 않았다. 실험에 사용한 생체조직은 인체조직, 돼지조직, 쥐간조직, 토기근육조직이다. 대부분의 생체조직은 가시광선영역에서 큰 산란계수를 가지고 있으며 이것은 투과도에 큰 영향을 미치는 것으로 밝혀졌다. 가시광선 영역에서 인체조직의 투과 깊이는 1.5~2cm이었다. Monte Carlo 시뮬레이션을 이용하여 생체조직내의 광전파(light propagation), 광선량(light dosimetry), 에너지율(fluence rate), 투과깊이(penetration depth)를 효과적으로 측정할 수 있음을 보여주었다.

  • PDF

여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교 (Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue)

  • 박정만;권성재;정목근
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.469-483
    • /
    • 2012
  • 인체 연조직에서 기계적인 진동의 전달 특성은 조직의 탄성 특성에 의존한다. 연조직의 진동 특성으로부터 암이나 종양을 진단할 수 있기 때문에 진동의 전달 특성에 대한 연구는 중요한 의미를 가진다. 이 논문은 연조직의 표면에 위치하는 여러 형태의 응력 진동원에 의해 연조직 내에 발생되는 변위 패턴을 분석하고 비교하였다. 진동원으로는 수직하중, 접선하중, 그리고 면외전단하중이 고려되었다. 점탄성 단일층에서의 변위에 대한 이론적 표현식을 구하였고, 수치계산은 반공간 및 무한평판조직에서 수행되었다. 그리고 유한크기조직에서의 변위패턴을 유한요소법으로 시뮬레이션하였다. 응력 형태, 진동원 크기 및 주파수, 그리고 경계면이 변위에 미치는 영향이 분석되었다.

광간섭 단층 영상기술을 이용한 생체 내 microneedle 삽입 구조 영상 (High-resolution imaging of microneedles in biological tissue with optical coherence tomography)

  • 김훈;허정;이강주;유수호;류원형;주철민
    • 정보저장시스템학회논문집
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2013
  • Optical coherence tomography (OCT) allows non-invasive, cross-sectional optical imaging of biological tissue with high spatial resolution and acquisition speed. In principle, it is analogous to ultrasound imaging, but uses near-infrared light instead of ultrasound, measuring the time-delay of back-scattered light from within biological tissue. Compared to ultrasound imaging, it exhibits superior spatial resolution (1~10 um) and high sensitivity. Therefore, OCT has been applied to a wide range of applications such as cellular imaging, ophthalmology and cardiology. Here, we describe a novel application of OCT technology in visualizing microneedles embedded in tissue that is developed to deliver drugs into the dermis without the injection mark in the human skin. Detailed three-dimensional structural images of microneedles and biological tissues were obtained. Examining structural modification of microneedles and tissues during insertion process would enable to evaluate performance of various types of microneedles in situ.

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Oral tissue response to soft tissue expanders prior to bone augmentation: in vitro analysis and histological study in dogs

  • Yoo, Jung Min;Amara, Heithem Ben;Kim, Min Kyoung;Song, Ju Dong;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제48권3호
    • /
    • pp.152-163
    • /
    • 2018
  • Purpose: To determine whether the swelling and mechanical properties of osmotic self-inflating expanders allow or not the induction of intraoral soft tissue expansion in dogs. Methods: Three different volumes (0.15, 0.25, and 0.42 mL; referred to respectively as the S, M, and L groups) of soft tissue expanders (STEs) consisting of a hydrogel core coated with a silicone-perforated membrane were investigated in vitro to assess their swelling behavior (volume swelling ratio) and mechanical properties (tensile strength, tensile strain). For in vivo investigations, the STEs were subperiosteally inserted for 4 weeks in dogs (n=5). Soft tissue expansion was clinically monitored. Histological analyses included the examination of alveolar bone underneath the expanders and thickness measurements of the surrounding fibrous capsule. Results: The volume swelling ratio of all STEs did not exceed 5.2. In tensile mode, the highest mean strain was registered for the L group ($98.03{\pm}0.3g/cm$), whereas the lowest mean value was obtained in the S group ($81.3{\pm}0.1g/cm$), which was a statistically significant difference (P<0.05). In addition, the S and L groups were significantly different in terms of tensile strength ($1.5{\pm}0.1g/cm$ for the S group and $2.2{\pm}0.1g/cm$ for the L group, P<0.05). Clinical monitoring showed successful dilatation of the soft tissues without signs of inflammation up to 28 days. The STEs remained volumetrically stable, with a mean diameter in vivo of 6.98 mm, close to the in vitro post-expansion findings (6.69 mm). Significant histological effects included highly vascularized collagen-rich fibrous encapsulation of the STEs, with a mean thickness of $0.67{\pm}0.12mm$. The bone reaction consisted of resorption underneath the STEs, while apposition was observed at their edges. Conclusions: The swelling and mechanical properties of the STEs enabled clinically successful soft tissue expansion. A tissue reaction consisting of fibrous capsule formation and bone loss were the main histological events.

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • 제41권3호
    • /
    • pp.231-240
    • /
    • 2014
  • Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.

간 조직 감쇄 계수의 초음파 영상 (The Ultrasound Imaging of the Tissue Attenuation Parameter in Human Liver)

  • 송인찬;곽철은;민병구
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권2호
    • /
    • pp.227-232
    • /
    • 1990
  • As a part of the study on ultrasonic tissue characterization, conventional ultrasonic imaging system is interfaced to the personal computer to acquire raw ultrasonic signal. One approach for tissue charaterization is performed using the attenuation map to the conventional images and the resulting attenuation map images are compared and inspected inside the region of interest from the viewpoint of pattern analysis. Currently, these methods are applied and modified to effectively find out the differences between the normal control and the patients with liver cirrhosis.

  • PDF