Browse > Article
http://dx.doi.org/10.7779/JKSNT.2012.32.5.469

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue  

Park, Jeong Man (Department of Electronic Engineering, Daejin University)
Kwon, Sung-Jae (Department of Electronic Engineering, Daejin University)
Jeong, Mok-Kun (Department of Electronic Engineering, Daejin University)
Publication Information
Abstract
The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.
Keywords
Ultrasound; Vibration; Elasticity; Shear Wave; Soft Tissue;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis and M. Ziol, "Transient elastography: A new noninvasive method for assessment of hepatic fibrosis," Ultrasound Med. & Biol., 29(12), pp. 1705-1713 (2003)   DOI   ScienceOn
2 A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, "Shear wave imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., 24(9), pp. 1419-1435 (1998)   DOI   ScienceOn
3 J. N. Barshinger and J. L. Rose, "Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51(11), pp. 1547-1556 (2004)   DOI   ScienceOn
4 K. F. Graff, "Wave Motion in Elastic Solids," Ohio State University Press (1975)
5 J. D. Achenbach, "Wave Propagation in Elastic Solids," North-Holland, Amsterdam, (1975)
6 B. A. Auld, "Acoustic Fields and Waves in Solids," John Wiley & Sons, New York, 1973.
7 K. Hoyt, B. Castaneda and K. J. Parker, "Two-dimensional sonoelastographic shear velocity imaging," Ultrasound Med. Biol., 34(2), pp. 276-288 (2008)   DOI   ScienceOn
8 T. J. Royston, H. A. Mansy and R. H. Sandler, "Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis," J. Acoust. Soc. Am., 106(6), pp. 3678-3686 (1999)   DOI   ScienceOn
9 E. M. Timanin, "Displacement field produced by a surface source of vibrations in a layered biological tissue," Acoust. Phys., 48(1), pp. 98-104 (2002)   DOI
10 B. N. Klochkov, "Near field of a low-frequency source of forced vibration on a layered biological tissue," Acoust. Phys., 48(1), pp. 70-76 (2002)
11 K. J. Parker, S. R. Huang, R. A. Musulin and R. M. Lerner, "Tissue response to mechanical vibrations for sonoelasticity imaging," Ultrasound Med. Biol., 16(3), pp. 241-246 (1990)   DOI   ScienceOn
12 Z. Wu, L. S. Taylor, D. J. Rubens and K. J. Parker, "Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials," Phys. Med. Biol., 49, pp. 911-922 (2004)   DOI   ScienceOn
13 Z. Wu, K. Hoyt, D. J. Rubens and K. J. Parker, ""Sonoelastographic imaging of interference patterns for estimation of the shear velocity distribution in biomaterials," J. Acoust. Soc. Am., 120(1), pp. 535- 545 (2006)   DOI   ScienceOn
14 J. McLaughlin, D. Renzi, K. Parker and Z. Wu, "Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments," J. Acoust. Soc. Am., 121(4), pp. 2438-2446 (2007)   DOI   ScienceOn
15 Z. Wu, L. S. Taylor, D. J. Rubens and K. J. Parker, "Shear wave focusing for three-dimensional sonoelastography," J. Acoust. Soc. Am., 111(1), pp. 439-446 (2002)   DOI   ScienceOn
16 D. Fu, S. F. Levinson, S. M. Gracewski and K. J. Parker, "Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach," Phys. Med. Biol., 45, pp. 1495-1510 (2000)   DOI   ScienceOn
17 L. Gao, K. J. Parker and S. K. Alam, "Sonoelasticity imaging: Theory and experimental verification," J. Acoust. Soc. Am., 97(6), pp. 3875-3886 (1995)   DOI   ScienceOn
18 J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol., 29(10), pp. 1387-1396 (2003)   DOI   ScienceOn
19 K. J. Parker, D. Fu, S. M. Gracewski, F. Yeung and S. F. Levinson, "Vibration sonoelasticity and the detectability of lesions," Ultrasound Med. Biol., 24(9), pp. 1437-1447 (1998)   DOI   ScienceOn
20 C. R. Hou, "Design and development of a pulsed wave Doppler ultrasonic system for measuring the viscoelasicity of soft tissue," Ph. D. Dissertation, National Cheng Kung University, Taiwan (2002)
21 C. S. Chu and M. C. Lee, "Finite element analysis of cerebral contusion," Advances in Bioengineering, ASME-BED-Vol. 20, pp. 601-604 (1991)
22 M. Hauth, J. Gross, W. Strasser and G. F. Buess, "Soft tissue simulation based on measured data," Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2003), Montreal, Canada, 262-270 (2003)
23 K. Nightingale, S. McAleavey and G. Trahey, "Shear-wave generation using acoustic radiation force: In vivo and ex vivo results," Ultrasound Med. Biol., 29(12), pp. 1715-1723 (2003)   DOI   ScienceOn
24 L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, "Fundamentals of Acoustics," John Wiley & Sons, New York, (1982)
25 J. Bercoff, M. Tanter, M. Muller and M. Fink, "The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51(11), pp. 1523-1536 (2004)   DOI   ScienceOn
26 B. Angelsen, "Ultrasound Imaging: Waves, Signals and Signal Processing," Emantec, Trondheim, Norway, (2000)
27 L. Sandrin, M. Tanter, S. Catheline and M. Fink, "Shear modulus imaging using 2-D transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 49(4), 426-435 (2002)   DOI   ScienceOn
28 S. Catheline, J. L. Thomas, F. Wu and M. A. Fink, "Diffraction field of a low frequency vibrator in soft tissues using transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 46(4), pp. 1013-1019 (1999)   DOI   ScienceOn
29 C. L. de Korte and A. F. W. Van der Steen, "Intravascular ultrasound elastography: an overview," Ultrasonics, 40, pp. 859-865 (2002)   DOI   ScienceOn
30 Y. Yamakoshi, J. Sato and T. Sato, "Ultrasonic imaging of internal vibration of soft tissue under forced vibration," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 37(2), pp. 45-53 (1990)   DOI   ScienceOn
31 M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound," Phys. Med. Biol., 45, pp. 1449-1464 (2000)   DOI   ScienceOn
32 T. Varghese, J. A. Zagzebski, P. Rahko and C. S. Breburda, "Ultrasonic imaging of myocardial strain using cardiac elastography," Ultrasonic Imaging, 25(1), pp. 1-16 (2003)   DOI   ScienceOn
33 K. J. Parker, L. S. Taylor and S. Gracewski, "A unified view of imaging the elastic properties of tissue," J. Acoust. Soc. Am., 117(5), pp. 2705-2712 (2005)   DOI   ScienceOn
34 S. F. Levinson, M. Shinagawa and T. Sato, "Sonoelastic determination of human skeletal muscle elasticity," J. Biomechanics, 28(10), pp. 1145-1154 (1995)   DOI   ScienceOn
35 S. Catheline, F. Wu and M. Fink, "A solution to diffraction biases in sonoelasticity: The acoustic impulse technique," J. Acoust. Soc. Am., 105(5), pp. 2941-2950 (1999)   DOI   ScienceOn