Browse > Article
http://dx.doi.org/10.1016/j.jcde.2016.06.006

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system  

Velasco, Marco A. (Servicio Nacional de Aprendizaje SENA, Centro Metalmecanico, GICEMET Research Group)
Lancheros, Yadira (Servicio Nacional de Aprendizaje SENA, Centro de Manufactura Textil y del Cuero, CMTC Research Group)
Garzon-Alvarado, Diego A. (Biomimetics Laboratory: Group of Mechanobiology of Organs and Tissues, and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnologia (IBUN), Universidad Nacional de Colombia)
Publication Information
Journal of Computational Design and Engineering / v.3, no.4, 2016 , pp. 385-397 More about this Journal
Abstract
Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.
Keywords
Bone scaffold; Reaction-diffusion models; Additive manufacturing; Porous structures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Frost H. The Laws of Bone Structure, 1st ed., Springfield, Ill: Charles C Thomas Publishers; 1964.
2 Pauwels F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. Z. Anat. Entwicklungsgeschichte 1960;121:478-515.   DOI
3 McNamara LM, Prendergast PJ. Bone remodelling algorithms incorpor-ating both strain and microdamage stimuli. J Biomech. 2007;40(6)1381-91.   DOI
4 Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol. Clin. North Am. 1991;29(1)1-18.
5 Raposo JF, Sobrinho LG, Ferreira HG. A minimal mathematical model of calcium homeostasis. J. Clin. Endocrinol. Metab. 2002;87(9)4330-40.   DOI
6 Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40(5)363-408.   DOI
7 Velasco MA, Narvaez-tovar CA, Garzon-alvarado DA. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering Article ID 729076. Biomed. Res. Int. 2015;2015: 21. (Article ID 729076).
8 Ikada Y. Challenges in tissue engineering. Interface 2006;3(10)589-601.
9 Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21(23)2347-59.   DOI
10 Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2)580-94.   DOI
11 Chua CK, Leong KF, Cheah CM, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2 : Parametric library and assembly program. Adv. Manuf. Technol. 2003;21: 302-12.   DOI
12 Sutradhar A, Paulino G. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc. Natl. Acad. Sci. 2010;107(30)13222-7.   DOI
13 Goncalves Coelho P, Rui Fernandes P, Carrico Rodrigues H. Multiscale modeling of bone tissue with surface and permeability control. J. Biomech. 2011;44(2)321-9.   DOI
14 Coelho PG, Hollister SJ, Flanagan CL, Fernandes PR. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis. Med. Eng. Phys. 2015;37(3)287-96.   DOI
15 Dias MR, Guedes JM, Flanagan CL, Hollister SJ, Fernandes PR. Optimization of scaffold design for bone tissue engineering: a computa-tional and experimental study. Med. Eng. Phys. 2014;36(4)448-57.   DOI
16 Woo Jung J, Yi H-G, Kang T-Y, Yong W-J, Jin S, Yun W-S, Cho D-W. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. J. Biomech. Eng. 2013;135(8)7.
17 Provin C, Takano K, Sakai Y, Fujii T, Shirakashi R. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J. Biomech. 2008;41(7)1436-49.   DOI
18 Starly B, Sun W. Internal Scaffold Architecture Designs using Linden- mayer Systems. Comput-Aided Des. Appl. 2007;4(1-4)395-403.   DOI
19 Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998;28(1)271-98.   DOI
20 Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505(7483)327-34.   DOI
21 Yang N, Zhou K. Effective method for multi-scale gradient porous scaffold design and fabrication. Mater. Sci. Eng. C, Mater. Biol. Appl. 2014;43:502-5.   DOI
22 Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik 1972;12(1)30-9.   DOI
23 Garzon-Alvarado DA, Velasco MA, Narvaez-Tovar CA. Self-assembled scaffolds using reaction-diffusion systems: a hypothesis for bone regeneration. J. Mech. Med. Biol. 2011;11(01)1-36.   DOI
24 Leppanen T, Karttunen M, Kaski K. A new dimension to turing patterns. Physica D 2002;169:35-44.
25 Maini PK. Spatial pattern formation in chemical and biological systems. J. Chem. Soc, Faraday Trans. 1997;93(20)3601-10.   DOI
26 Miyazawa S, Okamoto M, Kondo S. Blending of animal colour patterns by hybridization. Nat. Commun. 2010;1(66)6.
27 Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph 1987;21(4)163-9.
28 De Wit A, Borckmans P, Dewel G. Twist grain boundaries in three-dimensional lamellar turing structures. Proc. Natl. Acad. Sci. USA 1997;94(24)12765-8.   DOI
29 Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applica-tions. Biomaterials 2005;26(35)7436-46.   DOI
30 Almeida HA, Bartolo PJ. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med. Eng. Phys. 2014;36(8)1033-40.   DOI
31 Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3)461-6.   DOI
32 Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24(13)2363-78.   DOI
33 Sughanthy AP, Ansari MNMNM, Siva APS, Ansari MNMNM. A review on bone scaffold fabrication methods. Int. Res. J. Eng. Technol. 2015;2(6)1232-8.
34 Bashoor-Zadeh M, Baroud G, Bohner M. Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomater. 2010;6(3)864-75.   DOI
35 Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph P, Fischer A. Design, Analysis and Additive Manufacturing of Porous Structures for Biocompatible Micro-Scale Scaffolds. Procedia CIRP 2013;5:247-52.   DOI
36 Hollister SJ, Levy RA, Chu T-M, Halloran JW, Feinberg SE. An image- based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 2000;29(1)67-71.   DOI
37 Mullender M, El Haj a J, Yang Y, a van Duin M, Burger EH, Klein- Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 2004;42(1)14-21.   DOI
38 Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 2009;42(15)2507-12.   DOI
39 Bibb R, Thompson D, Winder J. Computed tomography characterisation of additive manufacturing materials. Med. Eng. Phys. 2011;33(5)590-6.   DOI
40 Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007;28(1)45-54.   DOI
41 Alkhader M, Vural M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity. Int. J. Eng. Sci. 2008;46(10)1035-51.   DOI
42 Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 2009;134(2)81-90.   DOI
43 Turing AM. The chemical basis of morphogenesis. Philos. Trans. R Soc. 1957;237:37-72.
44 Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010;29(5999)1616-20.
45 Garzon-Alvarado D, Garcia-Aznar JM, Doblare M. Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism. Comput. Biol. Med. 2009;39(6)554-61.   DOI
46 Dutta Roy T, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res. Part A 2003;67(4)1228-37.
47 Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015;9(1)4.   DOI
48 Crampin EJ, Maini PK. Reaction-diffusion models for biological pattern formation. Methods Appl. Anal. 2001;8(3)415-28.
49 Tezuka K, Wada Y, Takahashi A, Kikuchi M. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system. J. Bone Mineral Metab. 2005;23(1)1-7.   DOI
50 Courtin B, Perault A, Staub J. A reaction-diffusion model for trabecular architecture of embryonic periosteal long bone. Complex Int. 1997;04: 1-17.
51 Hepburn I, Chen W, Wils S, De Schutter E. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. 2012;6(1)36.   DOI
52 Garzon-Alvarado DA, Garcia-Aznar JM, Doblare M. A reaction-diffusion model for long bones growth. Biomech. Model Mechanobiol. 2009;8(5)381-95.   DOI
53 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-91.   DOI
54 Chen Q, Zhu C, Thouas G a. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog. Biomater. 2012;1(1)22.
55 Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 2006;11:43-56.   DOI
56 Chappard D, Terranova L, Mallet R, Mercier P. 3D porous architecture of stacks of ${\beta}$-tcp granules compared with that of trabecular bone: a microCT, vector analysis, and compression study. Front. Endocrinol. 2015;6(161)8.
57 Lenhert S, Meier M-B, Meyer U, Chi L, Wiesmann HP. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials 2005;26(5)563-70.   DOI
58 Chu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechan-ical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002;23(5)1283-93.   DOI
59 Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. USA 2012;109(20)7699-704.   DOI
60 Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007;28(13)2175-82.   DOI
61 Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater. 2012;8(4)1530-42.   DOI
62 Luczynski KW, Brynk T, Ostrowska B, Swieszkowski W, Reihsner R, Hellmich C. Consistent quasistatic and acoustic elasticity determination of poly-L-lactide-based rapid-prototyped tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2013;101(1)138-44.
63 Cowin SC, Cardoso L. Fabric dependence of wave propagation in anisotropic porous media. Biomech. Model. Mechanobiol. 2011;10(1)39-65.   DOI
64 Lakatos E, Magyar L, Bojtar I. Material properties of the mandibular trabecular bone ID 470539. J. Med. Eng. 2014;2014:7. (Article ID 470539).
65 Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 1985;18(3)189-200.   DOI