• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.026 seconds

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.

Nonlinear Feedback Linearization-Full Order Observer/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to obtain smmoth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO)and eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF

Efficient detectors for MIMO-OFDM systems under spatial correlation antenna arrays

  • Guerra, David William Marques;Fukuda, Rafael Masashi;Kobayashi, Ricardo Tadashi;Abrao, Taufik
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.570-581
    • /
    • 2018
  • This work analyzes the performance of implementable detectors for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system conditions, including antenna correlation and array configuration. A time-domain channel model was used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order, and antenna array configurations. Several MIMO-OFDM detectors were analyzed for the purpose of achieving high performance combined with high capacity systems and manageable computational complexity. Numerical Monte Carlo simulations demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.

Target Ranging Method by Using Near Field Shading Function (Near Field Shading 함수를 이용한 표적 거리 추정 기법)

  • 최주평;이원철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.199-202
    • /
    • 2002
  • This paper introduces the near field shading beamformer using widely known Chebyshev and Hanning window in the field of digital signal processing. The proposed shading beamformer improves the estimation of range as well as azimuth angle of targe residing in near field. A series of sensor weighting values are calculated from the FFT operation of given shading functions in time domain. This paper verifies the performance of the focused beamformer having the proposed shading sensor weights which are used to detect the range of target. Throughout computer simulations this paper exploits the performance improvement of the proposed shading beamformer as varying the frequency band of the received radiated signal along the non-uniform array.

  • PDF

Design of a Robust STATCOM Supplementary Controller to Suppress the SSR in the Series-compensated System (직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계)

  • Seo, Jang-Cheol;Mun, Seung-Il;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • This paper presents the design of an H$\infty$ based robust Static Synchronous Compensator (STATCOM) supplementary controller to suppress the subsynchronous resonance (SSR) in the series-compensated system. The IEEE second benchmark, System-l model is employed for this study. In order to design the effective controller, the modal controllability and observability indices to the oscillation modes are considered. Comprehensive time domain simulations using a nonlinear system model that the proposed STATCOM supplementary controller can suppress the SSR efficiently in spite of the variations of power system operating conditions.

  • PDF

Design of a Robust TCSC Supplementary Controller to Suppress SSR in FACTS (유연송전시스템(FACTS)에서의 SSR 억제를 위한 강인한 TCSC 보조 제어기의 설계)

  • Seo, Jang-Cheol;Kim, Tae-Hyun;Moon, Seung-Ill;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.884-886
    • /
    • 1998
  • This paper presents an LQG based robust TCSC supplementary controller design to suppress the SSR in the FACTS. This controller is designed to have the robust stability against the plant model uncertainty. The robust stability is guaranteed using the $\mu$ analysis. Time domain simulations using a nonlinear system model show that the proposed TCSC supplementary controller can suppress the SSR efficiently against the plant model uncertainty.

  • PDF

A Study of Parametric Curve Interpolator in CAD/CAM Ststem (CAD/CAM 시스템에서 매개변수형 곡선본간기에 관한 연구)

  • 김희송
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 1996
  • The interpolator is very important in CNC machines. This study proposed a parametric curve interpolator(PCI) which can be used for machining any sculptured surface represented in a parametric form and generates commands for tool motion between CAD data points according to given accuracy demands. The proposed interpolator is superior to the existing linear interpolator in accuracy, feed rate and acceleration continuity. Moreover in comparison to the recently developed cubic spline interpolator, the PCI has the capability of handling higher order parametric curves and also ensures precise tracking in the velocity domain. Results from real time simulations and experiments on open architecture CNC machines equipped with the proposed interpolator are presented to show its practical capagility. It is believed that the combination of the proposed interpolator and the open architecture machine controller further advances the area of command generation which is an important aspect of CAD/CAM.

  • PDF

Subbnad Adaptive GSC Using the Selective Coefficient Update Algorithm (선택적 계수 갱신 알고리즘을 이용한 광대역 부밴드 적응 GSC)

  • 김재윤;이창수;유경렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.446-452
    • /
    • 2004
  • Under the condition of a common narrowband target signal and interference signals from several directions, the linearly constrained minimum variance (LCMV) method using the generalized sidelobe canceller (GSC) for adaptive beamforming has been exploited successfully However, in the case of wideband signals, the length of the adaptive filter must be extended. As a result, the complexity of the beamformer increases, which makes real-time implementation difficult. In this paper, we improve the convergence characteristics of the adaptive filter using the transform domain normalized least mean square (NLMS) approach based on the subband GSC structure without the increase of complexity. Besides, the M-MAX algorithm, which is one of various selective coefficient updating methods, is employed in order to remarkably reduce the computational cost without decreasing the convergence quality. With the combination of these methods, we propose a computationally efficient wideband adaptive beamformer and verify its efficiency through a series of simulations.

A LQG based PSS design for controlling SSR in power systems with series-compensated lines (LQG 제어방식을 이용한 직렬 커패시터 보상선로의 SSR 제어용 PSS의 설계)

  • Seo, Jang-Cheol;Kim, Tae-Hyun;Moon, Seung-Ill;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.72-74
    • /
    • 1994
  • This paper presents a linear quadratic gaussian(LQG) based power system stabilizer(PSS) to control subsynchronous resonance(SSR) that occurs in a series capacitor compensated power systems. The complete SSR system based on the IEEE first benchmark model is employed in this study. Eigenvalue analysis and time domain simulations using a nonlinear system model show that the proposed PSS controls SSR efficiently.

  • PDF

A Numerical Study on Solute Transport in Heterogeneous Porous Media

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1027-1033
    • /
    • 2002
  • The solute transport in a two-dimensional heterogeneous porous medium is numerically studied by using a random walk particle tracking (RWPT) method. Lognormally isotropic hydraulic conductivity fields are generated by using the turning band methods with mean zero and four different values of standard deviation. The numerical transport experiments are carried out to investigate the large time and spatial effects of the variable pore velocity field on solute plumes. The behavior of the solute plume through numerical simulations is presented in terms of longitudinal and transverse spatial moments: displacement of center-of-mass, plume spread variance and skewness coefficient. It was observed that the dispersive behavior of the solute plume is strongly affected by the degree of heterogeneity in the flow domain.

  • PDF