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Nonlinear Feedback Linearization-Full Order
Observer/sliding Mode Controller Design tor
Improving Transient Stability in a Power System

Sang-Seung Lee and Jong-Keun Park

Abstract

In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to
obtain smooth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and
to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by
combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO) and
eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear
power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is
verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation

for the AVR gain K, and for the inertia moment M.

I. Introduction

Sliding mode control theories [1] have been applied as an
effective way of the design of small-signal stability controller
[2-13] and transient stability controller [14,15] for damping
oscillations in a power system.

Recently, nonlinear feedback linearization controller
(NFLC) has been attracting great deal of research interest
[16-19]. The central idea of the NFLC algebraically
transforms a nonlinear dynamics into a fully linear one by
differentiating the output equation only until the input term
appears, so that the traditional linear controller can be applied
[14-21].

However, these nonlinear feedback linearization-sliding
mode controllers (NFL-SMC) applied to the power system
stabilizer (PSS) [14,15] are based on the assumption that the
complete state is avaliable for implementation of the control
law.

In this paper, to obtain smooth control as the linearized
controller in a linear system, and to tackle the problem of the
unmeasurable state variables as in the conventional SMC, the
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nonlinear feedback linearization-full order observer/sliding
mode controller (NFL-FOO/SMC) is presented and applied as
the nonlinear power system stabilizer (PSS) [22].

The proposed controller is obtained by combining the
nonlinear feedback linearization-sliding mode control
(NFL-SMC) [14,15] with the full order observer (FOO) [24]
and it does not need to measure all the state variables as in
the conventional SMC.

The organization of this paper is as follows: In section 11
we briefly review the nonlinear power system model. In
section III the preliminary for the NFLC is presented. In
section IV the proposed NFL-FOO/SMC is presented. In
section V the nonlinear power system linearization is
presented.. In section VI we present the data analysis. In
section VII the nonlinear time-domain simulation is shown.

I1. Nonlinear Power System Model

In this section, we brifly review the nonlinear 4-th order
power system equations, the linearized power systern
equations and the conventional Lead-Lag PSS equations.

1. Nonlinear power system model [22]

The d-axis current and q-axis current equations including
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the stator algebraic equations and network equations can be
represented as

iD= come;,(t) — cony( Rysin 8(£) + X cos 8(H) )]

(D= conge;,( D — con,(— Xysin (D + R cos 8(5)) 2)

where

cons - = (G X, = CoRy) con i Ve

1- (R1R2+X1X2) ’ 2 (R1R2+X1X2)
_(CGRECGXY Ve
Cons - = (RiRy+ X, Xy) ° 4T (RR+ X1 Xo)
Z, =R +iXy , Zy, =Ry+jX; , Y:=G+B
Z\Z .

Zpi= lerzzz , 1+ Z:Y : =C+5C,

C1 :=RG—XB , Cz :=XG+RB

R :=R—Cx, , R, :=R—Cyx,

Xl =X+ Clxq » X2 =X+ Clx;

The expressions for v (8, v, (9, v{f), and TP are

v D =xi4,D 3)
v(D=e ) — x4t @
HOEEY GRRAQ) ®)

TLO=P(D=ifDv LD+ i(HvD)
= e, (Di(D+ (x,— x)i L Di (D ©®

where 7% is the d-axis current, 7, (9 is the g-axis current,
T(9 is the electric torque, P.(¢) is the electric power, e;,( 3]
is the qg-axis transient voltage, &(¢) is the torque angle, V.,
the infinite bus voltage, x, is the d-axis reactance, x, is the
g-axis reactance, and x, is the d-axis transient reactance.

Remark 1: In eq. 6, the electric torque 7, of a synchronous

machine near the synchronous speed can be approximated by
the electric power P,.

The nonlinear 4-th order state equations including the
limits imposed on AVR output, i.e. field voltage ey, and on

the stabilizing signal «; are represented as

(O =47 Tw=37 TD ™

)= w,(a()—1) @
P (xa—x2) .

e, (H= T e, +———T»d0 ®

(D === ek + TV vl D+ el D) 10)

Chmin S €< Chymax A upgn < up < Upmx (A1)

€/dmx=6.0 efdmin=_6.0 and ume=2.0 uEmin=_0-2

where «(#) is the angular velocity, e (#) is the exciter
output voltage, 7T, is the mechanical torque, 7, is the
voltage regulator gain, T, is the d-axis transient open circuit
time constant, M is the inertia coefficient, «, is the
synchronous angular velocity, V,, is the reference voltage,
vr is the terminal voltage, and #j; is the supplementary

excitation control input.

The 4-th order state variables is represented by
(D =[0,(D %D x:(H 5 (DI
=[a() 8B eD end] 12)
The nonlinear 4-th order state equations in eq. (7)-(10) are
written in the state space form as
x(8) = f+ gug() : 13)
y(D=h (14)

where F:= (A £ /5 DT
1 _1
M T M TLY)

— wlw(H)—1)
(xa— xd) 1
- Tdo (t)+ Tdo d(l‘)"f' efd( Ly}
- L efd( D + ( Vier— UT( D)
T
=(0 00 TA>
hi=w (1s)

2. Linearized power system model [22]

The differential equations are

A@(t):—%aau)—%de;(t) as)
A58 = w,dw(t) an
Ae';,(t)=— T dOK de (D) + efd( H (18)
¢ty =— L2520 2K ey~ A= eutt
+ 280 as)
A
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The 4-th order state variables can be expressed as

#()=[da(t) 45D det) defD] Qo
3. Conventional Lead-Lag PSS [23]

The state equations of the conventional Lead-Lag PSS are-

x,,l(t)—-—K—(—Tz—)A ()= xa() @1
ia= KDL= g0y

T () =gl @
) = () + 2 2D+ K- du() @3)

where x, and x, are the state variables of the PSS.

[MI. The Nonlinear Feedback
Linearization Controller (NFLC)

In this section, a nonlinear feedback linearization controller
(NFCL) is presented [16-19].
Let us consider the general nonlinear system

(D= Rx(D)+ g(x(D) ul?) 24

¥ = h(x () 25)
"~ in which Ax) and g(x) are smooth vector fields, and #4(x)
is a smooth function, defined on R".

The linearizing diffeomorphism using Lie derivative is
given by

2)=T(x(D) :=[h L L% L3h......... 17
=[2)(8) () 23D 2(D...... 17 (26)
where the Lie derivative L# is simply the directional

derivative of 4 along the direction of the vector f.

AL
ox f.

The state space form based on NFL can be expressed as

Remark 2: L,h=g—zf e , Lih=

2()= Az + Bu(d ’ @n
W D= Cz(t) (28)
where
010 ...0
A= |. . . . B=[000..... 0 1] 1xk
000 ... 1
000 01 ik

C=[000...... 0 1] ixm 29

The derivatives of the output are
W)= Lin(x (1))

LD — L (x(8)) + Lo (D))
izd%gl = L2h(x() + LLix () (D)

----------------------------

LD LI )+ Ly W (D)D) (30)
Remark 3: The eq. (24) and eq. (25) are said to have a
relative degree r at a point % if (i) L, Liu(x)=0 for all
x in a neighborhood of x°, and, for all % ¢ »—1 and (ii) if
L L7 (%0,

The block digram of the nonlinear feedback linearization
controller (NFCL) is shown in Fig. 1

nonlinear feedback linearization

X(0) = §(x(H), u(®) >

t) = gx(t),v(t) [
u(t) = g(x(t),v(t) V(0) = h(x(®)

f

Cz®
v(i)=-K z(t) [ z(t) = TG®)

nonlinear feedback linearization-based controller

Fig. 1. Nonlinear feedback linearization controller
(NFCL).

The control input vector based on NFL is

L

L %"

u(t) = g(x(), () - =— u(t) 3D

L L;‘lh

where »(H= —ﬁ—l has a linear relation.

IV. The Proposed Controller Desﬁgn

In this section, the nonlinear feedback linearization-full
order observer/sliding mode controller (NFL-FOO/SMC) is

presented.
The state equation based on NFL can be expressed as
2()= T(x () (32)

2(H = Az(H + Bu(d 33)
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yH= Cz(d ‘ (34)

where xeR", zeR", u=R", y=Rf, A is the system
matrix, B is the control matrix, and ¢ is the output matrix.

The full-order observer state equation based on NFL for
unmeasurable state variables can be expressed as

2D=Az(D+Bu(d+ L(y(d— C2(D)

=(A—LO)2()+ Bl ) + L) (35)
L=PC™R™! (36)
AP+PAT—-PCTR™'CP+ Q=0 &)

where ze=R™ is the estimated state, L is the xxm output
injection matrix, F is the symmetric positive definite
solution, and ¢ and K are positive definite matrices chosen
by the designer. From eq. (35), the following assumptions are
made :

(A,B) is controllable and (A,C) is observable.

The estimated control input vector based on NFL is given by

# nrr - roortar( ) = — K1 p2(£) (38
KLQRz R_ IBTF (39)
PA+ ATP-PBR'B"P+ Q=0 (40)

where K,y is an optimal feedback gain.

The closed loop system can be expressed as

A e e
[¥p1=[ C 0][ ggg] @2)

The switching surface vector and the differential switéhing
surface vector can be expressed as

o) = CTe( ) | @3)
o(2(H) =G (44)

where G7 is the sliding surface gain.

The design procedure for obtaining sliding surface gain G7
with DEA in the eq. (43) can be expressed as follows:
By coordinate transformation, we have

(D= Mz(D (45)
2H=M""p( (46)

“@7

where M is the #nXx#n nonsingular matrix, and B, is the

mX m matrix.

By differentiating eq. (45), we get

o= Mz(d) 48)
Substituting eq. (42) and eq. (46) into eq. (48), we get

2(8)= MAM'p(9) + MBu(2) “9)
By vpartitioning # such that p=[p, p,]7 where p, is a

(n—m)x1 column vector, and p, is a mx1 column vector,

eq. (49) reduces to

7D

D2(D

where A, is the (n—m) x(n—m), Ay is the (n—m) X m,
Ay is the mx(n—m), and A, is the mxm.

pi(d
wy)  (50)

(D

B,

[ Ay Ap

From the first part of eq. (50), we get

m1(D=Aupi()+ Appy(D) v (51)
From eq. (43) and eq. (45), we have

(DN =[Gy Gplpd (52)

= Gup1(D+ Gup(H=0 (53)
Substituting eq. (46) into eq. (43), we get
o(2(H)=GC"M 'HH=0 ’ (54)
Comparing eq. (52) with eq. (54), we get
[Gy Gpl=G"M! (55)
From eq. (53), p,(#) is obtained by

(== Gp'Gupi(?) (56)
p=[An—ApGulh 57
=Ad, (58)

If the pair (A,,A) is controllable by a suitable choice
of the vector Gy, the eigenvalues of matrix A, may be
placed arbituarily in the complex plane.

From eq. (56), let G,,=1, we get

GT: [Gll I]M (59)
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Thus, the sliding surface gain G” in eq. (43) is obtained.

To determine a control law that keeps the system stable,
we introduce the Lyapunov’s function based on NFL

V(2(D) = (=) /2 ‘ (60)

The time derivative of V(z(#) can be expressed as

W(2(H) = o(2(H) o(2(D) (61)
T2HGTz(P)
= G 2() G Az(H) + Bunrr—suc(H] < 0 (62)

where uyp _ syc is the input vector of the nonlinear feedback
linearization-sliding mode control (NFL-SMC).

The eq. (62) can be reduced as the control input with
switching function

uirr-suc{H = —(G'B) T [GTALz() for G'2() > 0 (63)

éﬁpL-SMc(t)S—(GTB)‘l [GTAlz(p) for GT2(H <0 (64)
The eq. (63) and eq. (64) can be formed as the control

input with sign function

w D= —(GTB) ! [GTAL=(¥) sign(a(2()) (65)

The eq. (65) can be simplified as

S _ sucl D) =— Ksucz(D) sign(o(2(9)) (66)

where Ko := (G'B) ' [GTA] 67

Finally, the estimated control input vector of the proposed
NFL-FOO/SMC for unmeasurable state variables is expressed
as -

Wi roorsuc )=~ Ksuc2(2) sign( o( (1)) . (69

where z(H)eR" is the estimated state variables, and Kgyc is
the control input gain of the sliding mode control.

Remark 4: The estimated state 2(#) in eq. (68) is obtained
from eq. (35).

The closed loop system can be expressed as

Z(t)] — BK sycsign(8( (D)) ] [ Z( )] (69)
29 LC A— LC— BK ycsign(s(2())| L 2(D

XD1=[ C 01[ ;gg (70)

The overall block diagram in Fig. 2 represents the proposed
NFL-FOO/SMC.

nonlinear feedback linearization

x(t) = fx(t), u(t)
¥(t) = h(x(t))

L O] u) = g&Ra),v(D)

i

L®=T1Aw)

50)=A2®O+Bu®+L(y®-C%®)

2t
Vv

v(t) = Ko 2(t) sign( 2 (sigma(t)))

Proposed NFL-FOO/SMC block

Fig. 2. Block diagram of the proposed NFL-FOO/SMC.

V. Nonlinear Feedback Linearization in
a Power System

In this section, the nonlinear feedback linearization to
cancel the nonlinearities in a power system is presented.

The nonlinear feedback linearization in a power system
from eq. (1)-(10) is obtained by differentiating the angular
velocity until the input term appears

zi:=Li=h=w ' (71)
a i =Lp=-St =00 L(1,-1) (72)
Lgh=%g=%g=0 (73)
23 =L%— a(th) f= 8x( (T T))
———]}4<pdgf2+pdmf3> (74)
(L h
LgL,h=—(—axL)—g=%(—jl( Tw— Te))g=0 (75)
2 =Lih= 2 (L= 5 (=7 (b + pdiefy)
=[pdy de pdyz pdylf (76)

LgLih— (L,h) ax( Tb(ﬁdgﬁﬁdmfs))g

—[Pdn pdy pdig pdiyle : ()]
where
Ve .
pdy i = ——Zz—(chOS(B)—Xlsln(S)) (78)
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pdy

bds

bdy

bds

bdg -

pdy

pds
bdy

bdyg

pbdy -

pdy -

by

by

pds

pdyg -

by

pdyg

by

bdy

bdy

bdy

: =%(X2cos(6) + R;sin(§))

: =xq%(X2cos(6)+Rlsin(6))

: =x;,%(1ezcos (8)— X,sin(8))

=x,Y,
=1— x,}Ya
 =(vg— x4 )pd) + (v, + %, )pds

t= Yd(vd—x,}iq) + Y (vx,i0)+1,

= 71‘;10 (xd—x?)ﬁdl

Tw
N
- = M wabdy
= __1%4(1%115}(1 + pdifs + pdypdig)
= _1%4 (pdisf\ + pd\afs 1 paigpdy)
:=——L (pdypa
e VAT 42 U4 o1)

Ve .
=7(R2cos(6)+Xlsm(6))

Voo
ZZ

(— X;sin(8) + Ricos (8))

 =(vg— x4 pdn + 2(x,— %) pdipds+ (v, + x,i2)bdos
L= Yq(x,,—x,})pdl +YAx,— x'd)pdg + pdsy

i =Y (g~ x)pdy + pdy+ Y 2ty — x)pdy

9

(80)

L3y

(82
(83)
84
@85
(86)

ty)

(88)

89

90)

o1

%2)

93

EL))

95)

%6)

67N
98)

%9

by 1 =2Y 1+ (x,— x) Y.) (100)

The pd in above equations represents partial derivatives.

The control input based'on NFL is

Lin 1
- 1 )
L,Li  L,L%h

w(h)=g(x(),v(h) :=— v(t)A (101)

_ —[l pdy pdiy pdyy pdu) f= (D]
[ pdu pdiy pdiy pdul g

(102)

VI. Data Amnalysis

In this section, the data analysis is presented.
The nominal data of the system, the operating conditions and
the conventional PSS are listed in Appendix.

The values of A and B under normal load operation are

0 —0.0763 —0.1101 0 0.

4—|36.99 0 0 0 p—| 0
0 —0.0327 —0.1967 0.1289 0
0 —80.424 —845.87 —20.0 1000

The values of Q and R for LQR are given by
Q=diag(le+6, 1, 1, 1e—2) and R=1
The controller gain is ‘
Kror=1—809.4244 7.3246 12.2734 0.0965]
The observer gain is
L=1.0e+005[0.001 —0.0065 0.0317 —7.2984]7
The sliding surface gain is
G=1e+005[—1.9004 —0.0176 0.0333 0.00001"

VII. Nonlinear Time-domain Simulation Test

In this section, the nonlinear time-domain simulation to
show the performance for the proposed controller is
presented.

Synchronous Generator Double transmission line
circuit
breaker

line-to-ground fault

Fig. 3. Block diagram of a power system under line-ground
fault at the midpoint of the double transmission line.
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A fault is applied to verify the performance of the
proposed controller under transient condition. The fault at
about 1.0 sec is assumed to occur at the midpoint of the
simple system in Fig. 3 and then is cleared after 0.05 sec and
the line is reclosed. In Fig. 3, Z2 is the total impedance of
faulted line and ¢=0.5 puts the fault in the middle of the
line.

1. A 3-cycle line-to-ground fault simulation test

1.010 +
1.006 +
1.002 +
0.998 +
0.994 +

Angular velocity(p.u.)

0.990

01 2 3 4 5 6 7 8 9 1011 12

time(sec.)

(1) Angual velocity

39.30
39.00
38.70
38.40
38.10
37.80

37.50 +—t——F———+—F—+—F—+—
01 2 3 4 5 6 7 8 9 101112

Torque angle(deg.)

time(sec.) -

(2) Torque angle

Fig. 4. Normal load operation. (a: no control b:
conventional PSS c¢: NFL-FOO/LQR-PSS d:
proposed NFL-FOO/SMC-PSS)

Fig. 4 shows the angular velocity waveform and the torque
angle waveform without any control, with the conventional
Lead-Lag PSS, with the NFL-FOO/LQR-PSS and with the
proposed NFL-FOO/SMC-PSS for a 3-cycle line-to-ground
fault under normal load operation.

Although the NFL-FOO/LQR-PSS can stabilize the system
it is shown that the proposed NFL-FOO/SMC-PSS, exhibits
better damping properties.

Because the conventional PSS in Fig. 4 gives poorly
damped response, the conventional PSS will not consider
again in the following discussions.

2. Parameter variation test

Case I : A parameter variations of AVR gain K,

Fig. 5 shows the angular velocity waveform in case of the
parameter variations (20% over-estimation) of the AVR gain
K, of the generating unit in the system.

1.010
1.006
1.002
0.998

0.994

Angular velocity(p.u.)

0990 +————+——+—+——+ —f— i
01 2 3 45 6 7 8 9101112

time(sec.)

(1) NFL-FOO/LQR-PSS

L.o10
1.006
1.002

0.998
0.994

Angular velocity(p.u.)

0990 +—p——t——A—t—t—+—+—+—+—
01 2 3 4 5 6 7 8 91011 12

time(sec.)

(2) proposed NFL-FOO/SMC-PSS

Fig. 5. Angular velocity waveforms for parameter
variation of the AVR gain KA.(e : normal f :
parameter variation)

It is shown that the proposed NFL-FOO/SMC-PSS in Fig.
5 (2) exhibits better damping properties and is less sensitive
to variations of the AVR gain K4 as compared to the
NFL-FOO/LQR-PSS in Fig. 5 (1).

Case II : A parameter variations of the. inertia moment M.

" 1.010
1.006
1.002

0.998 |
0.994

Angular velocity(p.u.)

0990 +—tp—F———p—t————+—+—
012 3 45 6 7 8 9101112

time(sec.)

(1) NFL-FOO/LQR-PSS
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ular velocity(p.u.)
S = =

g g8 8

® © &

?

=

0990 —p—t———+——+—+—+—+—+—+
012 3 45 6 7 8 9 1011 12

time(sec.)

(2) proposed NFL-FOO/SMC-PSS

Fig. 6. Angular velocity waveforms for parameter
variation of the inertia moment M. (e :
f : parameter variation)

normal

Fig. 6 shows the angular velocity waveform in case of the
parameter variations (20% over-estimation) of the inertia
moment M of the generating unit in the system.

Also, it is shown that the proposed NFL-FOO/SMC-PSS in
Fig. 6 (2) exhibits better damping properties and is less
sensitive to variations of the inertia moment M as compared
to the NFL-FOO/LQR-PSS in Fig. 6 (1).

VIII. Conclusions

A nonlinear feedback linearization-full order observer/
sliding mode controller (NFL-FOO/SMC) has been proposed
in this paper. '

The proposed controller has been applied to the nonlinear
power system stabilizer (PSS) for improving transient stability
in a nonlinear power system.

The main results are as follows :

1. Combining the full-order observer (FOO) with the
nonlinear feedback linearization-sliding mode controller
(NFL-SMC).

2. Obtaining a NFL-FOO/SMC, to tackle the problem of the
unmeasurable state variables in the conventional SMC, and
to obtain smooth control as the linearized controller in a
linear system.

3. Improving in the sense of time-domain dynamic
performance and robustness in case of a 3-circle line-
to-ground fault, and in case of the parameter variations
(20% over-estimations) for the AVR gain Ka and for the
inertia moment M.
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Appendix

The nominal data of the system, the operating conditions and
the conventional PSS are listed in Tables A.1-A.3.

Table A.1 Generator data and initial condition data

M T, D x4 2z x, w, P Q 'V,
926 776 3.0 0973 019 055 377 075 0025 105

Table A.2 Excitation system data and line data

K, Ta R X G B
50.0 0.05 0.034 0.997 0.249 0.262

Table A.3 Conventional Lead-Lag PSS data

K T, T, T, T
0.009 0.6851 0.1 0.06851 0.01
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