• Title/Summary/Keyword: time-domain boundary element method

Search Result 123, Processing Time 0.03 seconds

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

Simulating a Time Reversal Process for A0 Lamb Wave Mode on a Rectangular Plate Using a Virtual Sensor Array Model (가상 탐지자 배열 모델을 이용한 직사각형 판에서 A0 램파 모드 시간반전과정 모사)

  • Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • This paper presents the analysis of a time reversal process for $A_0$ Lamb wave mode($A_0$ mode) on a rectangular plate. The dispersion characteristic equation of the $A_0$ mode is approximated using the Timoshenko beam theory. A virtual sensor array model is developed to consider the effects of reflections occurring on the plate boundary on the time reversal process. The time reversal process is formulated in the frequency domain using the virtual sensor array model. The reconstructed signal is obtained in the time domain through an inverse fast Fourier transform. The validity of the proposed method is demonstrated through the comparison to the numerical simulation results computed by the finite element analysis.

A Time Domain Analysis for Hydroelastic Behavior of a Mat-type Large Floating Structure in Calm Water under Dynamic Loadings by Mode Superposition Method (모드중첩법을 이용한 정수중의 매트형 거대부유구조물의 동하중에 대한 시간영역 유탄성 해석)

  • D.H. Lee;K.N. Jo;Y.R. Choi;S.Y. Hong;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.39-47
    • /
    • 2001
  • In this paper, the hydroelastic behavior of a mat-type large floating structure is analyzed in time domain by using mode superposition method. The time-memory function is estimated by Fourier transforming the wave damping coefficients, which are computed by a higher-order boundary element method based on potential theory. Meanwhile, the structural response is obtained by time integrating the eigenmodes of the structure. Numerical examples are made for three test cases on the scaled model of a mat-type large floating structure ; weight pull-up case, weight drop case and weight moving case. In all three cases, the numerical results coincide well with experimental data.

  • PDF

Topology Optimization of an Acoustic Diffuser Considering Reflected Sound Field (반사 음장을 고려한 음향 확산 구조의 위상 최적 설계)

  • Yang, Jieun;Lee, Joong Seok;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.973-981
    • /
    • 2013
  • The main role of an acoustic diffuser is to diffuse reflected sound field spatially. Since the pioneering work of Schroeder, there have been investigations to improve its performance by using shape/sizing optimization methods. In this paper, a gradient-based topology optimization algorithm is newly presented to find the optimal distribution of reflecting materials for maximizing diffuser performance. Time-harmonic acoustic analysis in a two-dimensional acoustic domain is carried out where the domain is discretized by finite elements. Perfectly matched layers are placed to surround the domain to simulate non-reflecting boundary conditions. Design variables are assigned to each element of which material properties are interpolated between those of air and those of a rigid body. An approach to extract the reflected field from the total acoustic field is employed. To validate the effectiveness of the proposed method, design problems are solved at different frequencies. The performance of the optimized diffusers obtained by the proposed method is compared against that of the conventional Schroeder diffusers.

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Transient coupled thermoelastic analysis by finite element method (유한요소법에 의한 과도연성 열탄성 해석)

  • 이태원;심우진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1408-1416
    • /
    • 1990
  • A powerful and efficient method for finding approximate solutions to initial-boundary-value problems in the transient coupled thermoelasticity is formulated in time domain using the finite element technique with time-marching strategy. The final system equations can be derived by the Guritin's variational principle using the definition of convolution integral. But, the finite element formulation for the equations of motion is modified by differentiating in time. Numerical results to some test problems are compared with analytical and other sophisticated approximate solutions. Stable responces are observed in all the given examples irrespective of incremental time steps and mesh shapes. In addition, it is shown that good numerical results are obtained even in coarser mesh or larger time step comparing to other numerical methods.

Finite Element Formulation for Axisymmetric Linear Viscoelastic Problems (축대칭 선형 점탄성 구조물의 정적 유한요소해석)

  • Oh Guen;Sim Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.321-332
    • /
    • 2005
  • In this paper, the time-domain finite element formulations for axisymmetric linear viscoelastic problems, especially for the viscoelastic hollow sphere and cylinder, under various boundary conditions are presented with the theoretical solutions of them obtained by using the elastic-viscoelastic correspondence principle. It is assumed that the viscoelastic material behaves like a standard linear solid in distortion and elastically in dilatation. Numerical examples are solved based on the spherically symmetric, axisymmetric and plane strain finite element models. Good agreements are obtained between numerical and theoretical solutions, which shows the validity and accuracy of the presented method.

Numerical Experiments of Shallow Water Eqs. by FEM (유한요소법을 이용한 천수방정식의 수치실험)

  • Choi, Sung Uk;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.141-150
    • /
    • 1990
  • Numerical experiments of sballow water equations are performed under various boundary conditions by finite element method to simulate the circulation in estuaries and coastal areas. Galerkin method is employed to discretize spatial domain, and for time integration, finite difference method (Crank-Nicolson scheme) is used. This method is tested in five problems, in which first four cases have analytic solutions. The computed values are well in agreement with the analytic solutions in four experiments and the result of the last 2-dimensional ease is resonable. Implicit and two step Lax-Wendroff schemes in time domain are compared, and the results when using four node bilinear and triangular elements are presented. Consequently it takes very long time for complex problems requiring many elements to integrate all the time steps using the implicit schemes. And the explicit scheme requires careful consideration in selecting the time step and the grid size to obtain the desired accuracy.

  • PDF

Comparison Study of Viscous Flutter Boundary for the AGARD 445.6 Wing Using Different Turbulent Boundary Layer Models (난류 경계층 모델을 고려한 AGARD 445.6 날개의 플러터 해석 및 실험결과 비교)

  • Kim, Yo-Han;Kim, Dong-Hyun;Kim, Dong-Man;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.704-710
    • /
    • 2009
  • In this study, a comparison study of flutter analysis for the AGARD 445.6 wing with wind turnnel test data has been conducted in the subsonic, transonic and supersonic flow regions. Nonlinear aeroelastic using FSIPRO3D which is a generalized user-friendly fluid-structure analyses have been conducted for a 3D wing configuration considering shockwave and turbulent viscosity effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structure dynamics(CSD), finite element method(FEM) and computations fluid dynamics(CFD) in the time domain. MSC/NASTRAN is used for the vibration analysis of a wing model, and then the result is applied to the FSIPRO3D module. the results for dynamic aeroelastic response using different turbulent models are presented for several Mach numbers. Calculated flutter boundary are compared with the wind-tunnel experimental and the results show very good agreements.