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Abstract

A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-
works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in
this paper. This method uses a “universal approximator” based on neural network methodology in com-
bination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular con-
figuration rather than from closed form constitutive equations. Thus the new method obviates not only the
need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-New-
tonian Flows: Finite Elements & Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any
kind of finite element-type discretisation of the domain and its boundary for numerical solution of the gov-
erning PDE's. As an illustration of the method, the time development of the planar Couette flow is studied
for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic
(FENE) and FENE-Peterlin (FENE-P) models.

Keywords : Brownian dynamics, neural networks, molecular models, stochastic simulation, viscoelastic

flow, diffusion equation, Fokker-Plank equation, Brownian simulation, CONNFFESSIT

{. Introduction

The computation of viscoelastic fluid flow has undergone
strong development for the last three decades or so. Most
:ommon methods of numerical computation and analysis
ire macroscopic in nature where the system of mass and
nomentum conservation equations are supplemented by an
wppropriate closed form constitutive equation. The disad-
vantage appears for those models that cannot be cast into
:losed form (Hulsen et al., 1997, Ottinger, 1996). Recently,
1new technique, namely the CONNFFESSIT proposed by
lLaso and Ofttinger (1993), has been introduced to bypass
‘he need of a closed form constitutive equation. It is the
:ombination between the traditional element method and
‘he SST. The main idea of the CONNFFESSIT approach is
‘hat the polymer contribution to the stress is calculated
from the configuration of a large ensemble of microscopic
zntities which acts as a stress calculator instead of a closed
form constitutive equation (Ottinger, 1996; Laso and
Dttinger, 1993; Feigl et al., 1995; Laso et al., 1997, 1999).
This approach is an attempt to emulate the situation in real
liquids, where the full information about the stress is con-
fained in the configuration of molecules which results from
the deformation history. However, the Finite Element
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Method (FEM) in CONNFEESSIT requires the discreti-
sation of the domain under consideration into a number of
finite elements (FE) which are defined by certain fixed
topology in terms of a number of nodes. Breaking the orig-
inal domain of analysis into a set of finite elements is not
easy, specially for problems with moving boundaries, com-
plex boundary or free surface.

In addition to the popular methods for the numerical
solution of PDE's such as FEM, Boundary Element
Method (BEM) and Finite Volume Method (FVM), more
recent NN-based methods such as Radial Basis Function
Networks (RNFNs) (Kansa, 1990; Zerroukat et al., 1998;
Mai-Duy and Tran-Cong, 2001), MultiLayer Perceptron
Networks (MPLNs) (He et al., 2000), Approximate Iden-
tity Networks (AINs) (Conti and Turchetti, 1994) prove
to be promising. Such a NN-based method will be devel-
oped in the present work. Thus in contrast to FE-type
approximations, the presently proposed Computation of
Viscoelastic Flow by NN and SS method (CVENNSS) is
based on a direct combination of the stochastic simu-
lation of molecular model of polymers with NN-based
numerical techniques. In the present CVENNSS method,
the polymer stress is computed by a Brownian simu-
lation technique as a component of the macromolecular
approach (Hulsen er al., 1997; Ottinger, 1996; Bird et
al., 1987; Fixman, 1978a, 1978b). The polymer-con-
tributed stress is then used as position-dependent known
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terms in solving the continuity and momentum equations
in a macroscopic approach. The present method does not
require any fixed connectivity to satisfy a predetermined
topology, i.e. a mesh in which the elements are con-
strained by some geometrical regularity conditions (e.g.
a positive volume). The present discrete model is com-
pletely represented by a set of unstructured discrete col-
location nodes in the analysis domain and on its
boundary in both microscopic and macroscopic part of
the CVENNSS procedure and therefore is referred to as
a mesh-free numerical technique according to commonly
cited concepts (Onate et al., 1996; Belytschko er al.,
1996). The paper is organized as follows. In sections 2,
3, 4, the basic ideas of CVFNNSS are presented in which
the governing equations and the stochastic simulation
technique for computing the stress are described. In sec-
tion 5, the NN-based numerical method for approxima-
tion of a function and its derivatives is presented briefly
and the RBFN method for solving the conservation equa-
tions is described. Section 6 presents the algorithm of the
CVENNSS procedure, highlighting the macroscopic-
microscopic interfaces of the method. The numerical
examples are then discussed in section 7 with a brief
conclusion in section 8.

2. Governing equations

Considering the isothermal flow of an incompressible
fluid with density p, the system of momentum and mass
conservation equations is given by

p%’;+p(u.V)u=—Vp+V-r, (1)
Viu=0 2

where p is the pressure arisen from the incompressibility
constraint; u denotes velocity field; 7 is the extra stress.
The extra stress is then further decomposed as

t=17'+17", (3)

where 7' = 2n,L is the Newtonian solvent contribution; 7,
is the solvent viscosity; L is the rate of strain tensor; 7”is
the polymer-contributed stress. Using Eq. (3), Eq. (1) can
be rewritten as follows

Ju

p§;+p(u- V)u :—Vp+ V(2n‘L+T") (4)

In the traditional macroscopic approach the system is
usually closed by the specification of a closed form con-
stitutive equation for the polymer-contributed stress 7. In
contrast, " is here calculated numerically via a micro-
scopic technique. The overall macro-microscopic proce-
dure is described in the next section.
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3. The macro-microscopic approach

The general procedure for this approach is as follows. At
each time step the polymer-contributed stress is assumed
known from the previous iteration and the system of mass
and momentum conservation equations is solved by a mac-
roscopic numerical method. The velocity field thus
obtained is then used in a stochastic simulation technique
to calculate the polymer-contributed stress. The iteration is
continued until convergence is achieved before advancing
to the next time level.

The microscopic method employs the Brownian dynam-
ics simulation to determine the stress via kinetic modelling
(Ottinger, 1996; Bird et al., 1987) which is described in the
next section, followed by the description of a mesh-free
collocation method for the solution of the continuity and
momentum equations. All function approximations are
based on the radial basis function networks and the overall
procedure is free of finite-element-type discretisation and
thus referred to as mesh-free.

In the next section, the stochastic simulation technique is
presented for the computation of the polymer-contributed
stress 77,

4. Stochastic simulation technique in polymeric
kinetic theory

In polymer kinetic theory, the determination of polymer
stresses is carried out through two steps (Ottinger, 1996;
Laso and Ottinger, 1993; Feigl et al., 1995; Laso et al.,
1997). The first step is to derive the diffusion equation or
Fokker-Planck Equation for the configurational distribution
function y(Q,r) which is the probability density of the
polymer configuration @ occurring at time t. The second
step is to develop an expression for the stress tensor cor-
responding to the polymer configuration of which the dis-
tribution is expressed by y(Q,1). The stochastic simulation
is based on the relationship between the diffusion equation
and the stochastic differential equation (SDE). The detail
about the relationship between the diffusion equation and
SDE is presented, for example, in Ottinger (1996); Laso
and Ottinger (1993); Feigl et al. (1995): Laso et al. (1997)
and Laso er al. (1999).

In this work, two non-linear dumbbell models, the FENE
and FENE-P models, are studied using stochastic simu-
lation technique. The FENE-P has a corresponding approx-
imate closed form constitutive equation (Bird et al., 1987)
while the FENE model has not. These two dumbbell mod-
els are shown in Fig. 1 where the polymer configuration is
described by the connector vector Q(r). The dynamics of
polymeric liquids can be represented by the diffusion equa-
tion for y(Q,r) and, in the absence of external forces, is
given by (Ottinger, 1996; Feigl et al.. 1995; Bird et al.,
1987)
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Q

Vg, 1. Elastic dumbbell model: the connector vector Q describes
the configuration of the model.

J -9

Pa_t‘/’(Qv’ - aQ [A(QV[)W(Qﬁt)]
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where A(Q,r) is a 3-component column vector; D(Q.f) is a
Jositive semi-definite 3 x 3 matrix.

In the stochastic simulation technique, instead of solving
l:q. (5) directly, the polymer configuration Q(f) is deter-
1nined by using an equivalent SDE which is given by

dQ(r) = A(Q(0),ndr+B(Q(n),1)-dW(t) (6)

where W(r) is a 3-component column vector which is a
"Wiener process with mean (W{n))=0 and covariance
WOW()) =6 min(r,r'); B(Q.r) is a 3x3 matrix and
Q.0 =B(Q,nB"(Q,r). Stochastic theory shows that in
—eneral, the square-root tensor B is not unique because of
“he symmetry of matrix D (Ottinger, 1996). There are sev-
wral schemes to evaluate the tensor B, among of them is the
“"holesky decomposition which is generally employed. In
he present work, B is specifically given in closed form for
:ach of the FENE and FENE-P models as shown in later
ections. The theory also shows that although the trajec-
ories obtained from the SDE are different for various
-hoices of the tensor B, all transition probabilities and then
iheir averages are identical (more details can be found in
Dttinger (1996), for example).

In polymeric fluids, for a given kinetic model of poly-
mer molecules, the solution of Eq. (6) at each time ¢, (the
'ime discretization) is obtained by the simulation of the
wonfiguration of the model, which starts from a given
srobability distribution function of the configuration at ¢,.
'he drift and diffusion terms A and B respectively of Eq.
6) depend on the given kinetic models. The numerical
ntegration of the SDE (6) can be carried out using dif-
erent schemes (Ottinger, 1996; Kloeden et al., 1997,
{loeden and Platen, 1997; Gardiner, 1990; Gihman and
skorohod, 1974). In this paper, the explicit Euler inte-

4.1. FENE dumbbell model

In the kinetic dumbbell models, the polymer solution is
considered as a suspension of a great number of non-inter-
acting dumbbells. Each dumbbell consists of two Brown-
ian beads with the friction coefficient {, which are
connected together by a spring as shown in Fig. 1. The
configuration of a dumbbell is completely described by the
length and orientation of the vector @ connecting the two
beads. In a Hookean dumbbell model (not used in this
paper) the linear spring force is realistic only for small
deformation from the static equilibrium configuration and
the extent of the dumbbell's stretch is not limited. This
unphysical behaviour is overcome by the FENE model
which plays an important role in non-linear rheological
phenomena. Neglecting the external forces, the diffusion
Eq. (5) corresponding to the FENE model can be expressed
as (Ottinger, 1996; Laso et al., 1999; Bird et al., 1987)

J 29 J 2kT 0 o
PEW(Q,I)=-C@'FW—@~[K~Q]W+—C‘@'8—Q'W (7)

where K= (Vu)' is the transpose of the velocity gradient
which can be a function of time, but not position (i.e.
locally homogenous flows at the dumbbell (Bird et al.
1987, §13.2)). The velocity gradient tensor is calculated
analytically from the velocity field which is approximated
by TPS-RBFN (see §5 and step (d) of §6 for more details).
In the present work, the local homogeneity of the flow
around each dumbbell can naturally be assumed in an arbi-
trarily small volume around the dumbbell. The spatially con-
stant velocity gradient takes the value computed at the
dumbbell centre of mass position. The FENE spring force F
is given by (Bird et al., 1987; Herrchen and Ottinger, 1997)

4 2
(&)

where Q" is the maximum possible spring length. The SDE
corresponding to the FENE model is now given by

®)

ag) = | w02 —20 S lare Mhawy )
vl
2,
where W(r) accounts for the random displacement of the
beads due to thermal motion; T is the absolute temperature
and k is Boltzmann constant.
Let @; be an approximation of Q(r) at time #,, Af = f;,,,—
t;. The solution from the explicit Euler integration scheme
is written as follows

sration scheme is employed. The SDE's and their numer- Qi.n=0+ K',-~Q,-—2—2-[- 9 5 |At+ I%AWI- (10
cal solution for some kinetic models are presented in the 1_(%)
next subsection. Q.
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The dimensionless forms of Egs. (9) and (10) are written
as follows (by dividing by JkT/H)

400 =| K- Q)-53 LG lars [Lawey )

gz
! b
{ ] ' 1 _Q'l_ At
Qirn=0Q'i+ K- Qim 5 —= A+ =W, (12)
(i+1) [ 21’1 I_Qb_"zJ A'H

Q= Q.JH/kT is the dimensionless connector vector at
t; Ay = {J@AH) is the relaxation time of dumbbells;
b =HQYkT is the square of the maximum extension of the
dimensionless connector vector @'. Thus in the FENE
dumbell model, the connector vector cannot be stretched
beyond a maximum value of ./b in the dimensionless
sense (Laso and Ottinger, 1993). The components of the
random vector W, are independent Gaussian variables with
zero mean and At variance. Because of the non-linearity of
the spring force, this model has no corresponding closed
form constitutive equation for the polymeric stress tensor
and therefore it cannot be solved with the traditional mac-
roscopic approaches.

Based on the polymer configuration Eq. (12), the dimen-
sionless form of stress tensor of polymer contribution at the
time #; can be determined as follows (Ottinger, 1996; Bird
et al., 1987; Herrchen and Ottinger, 1997)

pe kT | [ L1215\
o= kT[<1_Q'_?> 1] (13)
b

where n is number of dumbbells per unit volume of solu-
tion.

4.2. FENE-Peterlin (FENE-P) dumbbell model

The FENE-P model is based on the FENE dumbbell
model in which the term Q%02 in the denominator of
spring force shown in Eq. (8) is replaced by its average
(Q%/Q2 . The spring force F is rewritten as follows (Bird
et al., 1987; Herrchen and Ottinger, 1997; Keunings,
1996)

F=—t_g. (14)
Q;>
In this case, the dimensionless form of the polymer con-

figuration and the contribution to stress are given as fol-
lows, respectively,

' ' 1 Q'i At
wn=Qi+| K- Q'i———- Ar+ [Z=W, 15
Q( |} Q [ Q 2/1,., L b,z ] " ( )
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2 =—nkl{ 2. _1]. (16)
(i)

The average which appears in the denominator of Eqgs.
(15) and (16) is calculated over the number of dumbbells
in a small local domain where the dumbbells are located.
From Eq. (15), it can be seen that the length of connector
vectors Q' could become greater than the maximum allow-
able limit ./ during the simulation (Laso and Ottinger,
1993; Keunings, 1996). In the present work, this unphys-
ical situation is corrected by contracting the unphysical
value as follows Q'] = Q' ]-mod(|Q]./B). The “reflect-
ing” method of Laso and Ottinger (1993) is a special case
in which the length of Q' satisfies: Jb<|Q| <2./5.

At time step (i + 1), the computed stress tensor 17,, is then
employed to get the solution of the velocity field u from the
governing PDE's (1) and (2) which are solved by a RBFN-
based numerical method presented in the next section.

5.Radial basis function networks for solving
the continuity and momentum equations

Recently, the application of RBFNs in numerical solu-
tion of PDE's have brought interesting results (Kansa,
1990; Zerroukat et al., 1998; Mai-Duy and Tran-Cong,
2001). Comparing many available interpolation methods
for scattered data, Franke (1982) ranked Multiquadric
RBF (MQ-RBF) of Hardy (1971) and Thin Plate Splines
RBF (TPS-RBF) of Duchon (1976) as superior in accu-
racy and both of these RBFs are employed in the present
work. Since TPS-RBFN has the advantage of containing
no adjustable width parameter, it is a preferred choice in
this paper.

5.1. Radial basis function network interpolation

In principle, it is possible to approximate any smooth
function with radial basis function networks having a sin-
gle hidden layer architecture. The present work uses the
linear RBF network with one hidden layer of RBFs where
the function fix) is decomposed into m fixed RBFs as

m L.
flx) = _Z] Wi (x) (17)
=
where w’ is the synaptic weight and /' is the chosen radial
basis function corresponding to the j* neuron. Usually m <
n (Haykin, 1999) where n is the number of input data
points (x;, ’;,-); x; is the coordinate of the i collocation
point (x; is a scalar in the case of 1-dimensional space) and
’;,- is the desired value of function f at the collocation
point x;. After the training process is completed, a set of
weights corresponding to the chosen radial basis functions
is obtained. It is important to recognise that the RBF net-
works are function approximating networks and not learn-
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11g networks in the present context. Therefore, for a given
ciscretisation, there is only one “training pattern” and the
retwork weights are found in a single general linear least
square procedure (Mai-Duy and Tran-Cong, 2001). The
partial derivatives of fix) can be calculated analytically as
{Hllows

) o W
Tty 2" O, (1%

As mentioned above, the RBF's /# employed here are
¢ither MQ-RBF or TPS-RBF which are given by

wry = (le—cl) = Jr' +a"* (19)
i>r the MQ-RBF, and
Hry=(x-clh)=r"log(r), m=1,2,. (20)

{or the TPS-RBE.
The corresponding first order derivatives are given by

B_iz/ _xi=d

o, [rL 0 @n
1or the MQ-RBFE, and
zﬁ " el (2mlog(r) +1) (22)

for the TPS-RBE.
The corresponding second order derivatives are given

W x()~(xi—ch(x=cf)
ox0x, 02y} ’

(r +a
x(ry=x ‘+a? Vi=1 .
2(N=0 Vil (23)
ior the MQ-RBF, and

3 h’ 2(m-2)
oxox, =2

2(m-1)

(=" "2mlog(r)+1) V=1

2(1)=0  Vizl (24)
1or the TPS-RBF where r = (x —¢/) and r= H(x—c’)” is the
J“uclidean norm of r; {c¢/}is a set of centres that can be
hosen from among the data points; @ > 0 is called the
wvidth of the /" RBF (Haykin, 1999). The accuracy of the
-AQ-RBF approximation is very dependent on the width
vf the RBF (Kansa, 1990; Park and Sandberg, 1991; Carl-
«on and Foley, 1991), whose choice is still an open ques-
rion.

In the present work, the set of centres is the same as the
vt of training points. The width & is computed according
15 Orr (1997) as follows

Korea-Australia Rheology Journal

= kd’ (25)

where &’ is the distance from the j* centre to the nearest
centre; k is a chosen coefficient.

Since the MQ-RBF is C™-continuous, it can be employed
directly. In the case of TPS-RBEF, it is C*™_continuous, the
power index m must be appropriately chosen for a given
partial differential operator (Zerroukat et al., 1998). In the
present work, the TPS-RBF with m = 2 is chosen to satisfy
the continuity condition.

The training of the linear model Eq. (17), given a training
set of p collocation points {(x;, ;i)}”izl, can be achieved
via the minimisation of a cost function based on the sum of
squared errors

Cowy= 3 (¥ i-flx)y. . (26)
i=1

Furthermore, in order to counter the effect of over-fitting,
a roughness penalty term can be added to the cost function
to produce

Clw. A)= z<v —f) + AT W @7
j=1
where A is the global regularisation parameter. The mini-
misation of the cost function Eq. (26) (without regularisation)
or Eq. (27) (with a given regulamatlon parameter A) yields
an optimal weight vector w = "1 as follows

[w W w |
w=A"H"y (28)

where Hi s the de31gn matrix with Hi=#(x) and vector

DI ,,] is the p -dimensional vector of trammg
output values. A "= (H'H)"' (without regulansatlon)A
(H'H + AI)"" (with regularisation) and I is the identity

matrix (Tran-Canh and Tran-Cong, 2002; Orr, 1997,1999).

Using the RBFN-based approximation, the function f(x)
as given in Eq. (17) is determined after the training and its
derivatives can be calculated analytically in terms of basis

(x;—~cf)(xy—ci ) 2m(m—1)log(r)+(2m—1)]+ y(r) functions as mentioned in Eq. (18)-Eq. (24).

5.2. Time integration of the momentum conserva-
tion equation by collocation and RBFN method

This section describes the RBFN-based numerical
method employed to solve the continuity and the momen-
tum equations in which the velocity field u is considered as
an unknown and the polymer contributed stress 77 is
already computed by the SST as described in §2—4. Spe-
cifically, the start-up planar Couette flows is used to
explain the method.

5.2.1. Governing equation, boundary conditions and
initial conditions

For the start-up planar Couette flow problem, a catersian
coordinate system is chosen as shown in Fig. 2. For ¢ <0,
the fluid is at rest. At =0, the lower plate starts to move
with a constant velocity V. No-slip condition is assumed at
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y
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Fig. 2. The start-up planar Couette flow problem: the bottom plate
moves with a constant velocity V, the top plate is fixed; no-
slip boundary conditions apply at the fluid-solid interfaces.
The collocation point distribution is only schematic.

the walls, following Mochimaru (1983).
A velocity field that satisfies the equation of continuity
(2) is given by

u=u=uly,1), wu,=0, wu.=0 (29)

In the present problem, it is not necessary to calculate the
pressure field (Laso and Ottinger, 1993; Mochimaru, 1983)
and the momentum Eq. (4) is rewritten as follows

du__ Jdu ot
PE—"I.\-ayg— (9_\'

eQ (30)

where y and ¢ are the space and time coordinates; p is the
density of the fluid; n; is the solvent viscosity; t7.(y,1) is
the polymer-contributed stress. In the more general situ-
ation the pressure would have to be calculated.

Eq. (30) is subjected to Dirichlet boundary conditions as
follows

u(0,n=vV V>0,
u(L,H=0 V>0 3D

and the initial conditions

u(0,0)=V, u(»,0)=0, Vyz0 (32)

The shear stress 7, at a time step is considered as a
known function of y and calculated from the previous step
by Brownian simulation technique already described. Its

derivative (93\‘7‘ is approximated by a RBFN-based method

as presented in §5.1.

The PDE (30), subject to Eq. (31) and Egq. (32), can be
solved by a RBFN-based numerical method which is
described in the next subsection.

5.2.2. Solution of differential equations by collocation
and RBFN method

Using the standard implicit approximation and rearrang-
ing the terms, Eq. (30) can be written as follows (Kansa,
1990; Zerroukat et al., 1998; Constantinides and Mostoulfi,

166

Ju

+oa= ="+ =% ”+Atl(’“/’ (33)
Iy

where At is a umform time step size; let t, =1, + At, "
uly, 1,); o = GAt . B= (1—9)At% with 0 8< 1. K =

é%, and (Constantinides and Mostoufi, 1999)
Kn+l/7 (Kn+1 ) (34)

where K"=K(t,) and K™ is approximated by backward
difference as follows

n+l (K"+K Al)—ZK" n i (35)

where K" is the gradient of K at z,. Using (34) and (35),
(33) is rewritten by

. 2un+l a un
n+ +o _ ”+,B
o’

2%31(‘4('*‘) (36)
Thus Eq. (36) 1s the time discretization of the PDE (30)
in which the terms on the RHS are determined from the
previous steps. The first and second terms on the RHS are
determined from a TPS-RBFN-based approximation of the
current velocity field. The third term is obtained from a
TPS-RBFN-based approximation of the data of the Brown-
ian simulation process.
Specifically, to start the process, Eq. (36) is rewritten as
follows
N du’
PE =u +ﬁ8) +TA1 37

where I(‘—/—Dam It can be seen that the first term on
the RHS of (37) is the initial condition of the problem.
In the present work, Eq. (36) with the boundary con-
ditions (31) 1s solved for u at the time step (n+1) using the
linear least square principle. The sum of squared errors
corresponding to the first step is given by

o

+3 K’ (yi))}[u"<0)—Vf+[u"(L)f (38)

SSE(l)= ¥ [(u )+ &

y,€ Q2

where  is the domain under consideration. u', 0, and
their derivatives in Eq. (38) are approximated by either
MQ-RBFNs (Eq. 17, Eq. 18, Eq. 19 and Eq. 23) or TPS-
RBFNs (Eq. 17, Eq. 18, Eq. 20 and Eq. 24). Note that in
the case of 1-D problem under consideration, y;'s are inter-
nal collocation points, v, =0 and y, =L are boundary col-
location points. Generally, at time level (n+1), the sum of
squared errors is
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SSE(n+1)= ¥ [( "y, )+a8} W'y, )) (u”(»)+[3 Su” ()

;€ Q

5K 0K on |+t 69)

In the general case, the set of collocation points consists
o’ the internal data and boundary data points. The col-
lc cation points can be distributed randomly or regularly. In
tl is paper, the collocation points are arranged on the reg-
uar grid and coincident with RBF centres. This choice
g ves the best results according to Kansa (1990), Zerroukat
e. al. (1998) and Mai-Duy and Tran-Cong (2001). A sys-
te m of linear algebraic equations is obtained in terms of the
uiknown weights as shown in Eq. (28) and rewritten as
fullows

Aw=H"y (40)

v here A is the variance matrix and described in §5.1. Here,

e.ich row of the design matrix H contains the values of the
() D,

FBF corresponding to the terms u (y )+a o ;y 1sa

column vector whose elements correspond to the terms
20

Ly )+ﬁa - (y‘) ;AIK (v)) and w is the vector of weights.

The ve1001ty field is thus described by the RBFNs once the
sits of weights are calculated.

The numerical solution of the velocity field #' from Eq.
(18) (in the least square sense) is the starting point for the
solution of (39) at a general time step. The process con-
t-nues until the steady state or a desired time is reached.
The time discretisation is based on the Crank-Nicolson
i nplicit method with 8=0.5 which reduces the total vol-

v me of calculatlon and is convergent and stable for a large
, 1969).

€. Algorithm of the CVFNNSS procedure

The general macro-microscopic approach mentioned in
§3 can now be described in a more detailed algorithm as
follows.

a. Start with a given initial velocity condition, generate a
s:t of collocation points and an initial velocity field is
aoproximated by RBF networks;

b. Generate an ensemble of homogenously distributed
clambbells over the flow domain. This initialisation of the
polymer configuration field is based on the known equi-
librium distribution function which is a three dimensional
Ciaussian distribution with zero mean and unit covariance
(Dttinger, 1996; Bird et al., 1987);

¢. Generate local volumes surrounding the collocation
points. The local volumes are chosen such that each dumb-
bell is accounted for in one of these local volumes;
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d. After the current velocity field is approximated by
RBF networks, determine the velocity gradient field by cal-
culating directly the gradient of the approximated velocity
field for individual dumbbells;

e. Calculate the polymer configuration field (the con-
nector vectors of the dumbbell ensemble) using the method
described in §4. The velocity of the centre of mass of each
dumbbell is considered to be equal to the point-wise local
fluid velocity;

f. Determine the local stress tensor by taking the ensem-
ble average of the polymer configuration on each local vol-
ume and assign this stress to the collocation point
associated with this volume. The stress is then approxi-
mated globally on the whole domain by RBF networks
which are the ultimate description of the stress field. This
global approximation procedure smooths the piecewise
continuous stress field with a globally continuous function.
This could be achieved by either TPS-RBFNs or MQ-
RBFNs. However, the former was proved to have superior
smoothing characteristics (Beatson and Light, 1997) and
hence is used in the present work;

g. With the stress field just obtained, solve the set of con-
servation equations for the new velocity field using a mesh-
free RBFN method as described in §5;

h. Terminate the simulation when either the desired time
or steady state is reached. The latter is determined by a
convergence measure for either the velocity field or the
stress field between two consecutive iterations which is
defined for velocity field by

N d 5
%3 -y’
li=

CM = <tol 41)

1

N d N
)1: 21 (ur)
where d is the number of dimension 1 in the present work);
tol is a preset tolerance; u; is the i component of the veloc-
ity at a node; N is the total number of collocation points
and n is the iteration number. Convergence is also checked
for the shear stress and the first normal stress difference;

i. Return to step (d) for the next time level.

7. Numerical examples

The aim of the present work is to report an initial assess-
ment of the validity and efficiency of the present meshless
method and therefore the start-up planar Couette flow is
considered using two kinds of kinetic dumbbell models:
the FENE and FENE-P. The problem, already described in
§5.2.1 and Fig. 2, was solved using the FENE-P model by
Mochimaru (1983), and FENE/FENE-P by Laso and
Ottinger (1993) while Fan (1985) provided a steady state
solution using the FENE model. In order to compare the
present results with those from Mochimaru (1983), Laso
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and Ottinger (1993), the same number of dumbbells M =
50000 is homogeneously distributed into the domain and
the same non-dimensionlisation scheme as in Laso and
Ottinger (1993) is used. The non-interacting dumbbells are
neutrally suspended in a Newtonian solvent of known vis-
cosity 7,, density p and the resultant material is charac-
terized by the relaxation time Ay. The dimensionless gap L
=1, moving plate velocity V=1 and zero-shear-rate vis-
cosity 1, =1, + 1,= 1. A set of N collocation points is gen-
erated in the volume either randomly or regularly. For the
comparison with others methods, in this simple geometry
the local volumes are chosen line segments of equal length
L/(N-1) except the two volumes near the boundaries. In this
work, the convergence measure is set at 107 and the sim-
ulation is continued for #>0 until the flow reaches the
steady state.

7.1. Start-up planar Couette flow with the FENE
model

The FENE model has no closed-form constitutive equa-
tion and the problem was solved recently by Laso and
Ottinger (1993) using the CONNFFESSIT approach. In
this work, as in Laso and Ottinger (1993), the parameters
are: 50000 dumbbells, 41 collocation points, p=1.2757,
Ay=49.62, b=50, n,=0.0521, Ar=10" (Ar=10" in
Laso and Ottinger (1993)). The numerical solution by the
present method confirms the velocity overshoot of vis-
coelastic fluids and is in complete agreement with the find-
ings of Laso and Ottinger (1993).

Fig. 3 describes the evolution of the velocity profile,

09

08

e7r

[oX:14

05+

04r

uy.t)

Fig. 3. The start-up planar Couette flow problem using the FENE
dumbbell model: the parameters of the problem are num-
ber of dumbbells M=50000, number of collocation points
N=41, 2,=49.62, b=50, 1,=0.0521 and Ar=10". The
velocity profile with respect to location y at different
times shows velocity overshoot but hardly any oscillation.

168

ur(yw t)

Fig. 4. The start-up planar Couette flow problem using the FENE
dumbbell model: the parameters are same as in Fig. 3.
The influence of the number of collocation points on the
time evolution of the velocity at locations y=0.2, y=0.4,
y=0.6 and y=0.8.

01 ; ; ; ; ;
o

Fig. 5. The start-up planar Couette flows using the FENE model:
the parameters other than N are shown in Fig. 3. The evo-
lution of shear stress at the location y=0.8 with respect to
time for N=41, 31, 26 and 21.

which shows that velocity undershoot is insignificant in
comparison with overshoot. Fig. 4 shows that typical time
evolutions of the velocity at four locations y=0.2, y=04,
y=0.6 and y = 0.8 do not differ significantly for the cases
N =41 and 31, indicating that N = 31 is an adequate num-
ber of collocation points. Fig. 4 also shows that velocity
overshoot occurs sooner in fluid layers nearer to the mov-
ing wall.

Figs. 5 and 6 show a typical evolution of the shear stress
and the first normal stress difference, respectively, at loca-
tions v = 0.8 for the cases of N = 41, 31, 26 and 21 col-
location points. On the other hand, Fig. 7 and Fig. 8 depict
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Tex = Tyy
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}ig. 6. The start-up planar Couette flows using the FENE model:
the parameters other than N are the same as shown in Fig.
3. The evolution of the first normal stress difference at
location y=0.8 with respect to time for N=41, 31, 26 and
21.

07

-0y s m ¥ 2 2
- !
lig. 7. The start-up planar Couette flows using the FENE model:
the parameters are the same as shown in Fig. 3 except that
the number of collocation points is 31. The evolution of
shear stress at locations y=0.2, y=0.4, y=0.6, y=0.8 and
y=1.0 with respect to time.

t1e evolution of shear stress and the first normal stress dif-
12rence, respectively, at locations y=0.2, y=04, y=0.6
and y=0.8 using N=31. The stress response is sharper
1 2ar the moving wall which is consistent with the velocity
¢ vershoot behaviour.

The time-step size At influences the accuracy of the
1 ticroscopic stochastic integration. Generally, the larger is
tie time-step size, the bigger is the mean error of solution
f SDE's (9) or (11). However, when At is very small the
variance may be large due to round-off errors and can
destroy the result (Kloeden et al., 1997, Kloeden and
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Fig. 8. The start-up planar Couette flows using the FENE model
in the present CVFNNSS method: the parameters are the
same as shown in Fig. 3 except that the number of col-
location points is decreased from 41 to 31. The evolution
of the first normal stress differences at locations y=0.2,
y=0.4, y=0.6 and y=0.8 with respect to time.
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Fig. 9. The start-up planar Couette flows using the FENE
model in the present CVFNNSS method: the shear
stress profiles 7,, and the statistical error bar with
respect to location y at different times 7=0.60, 3.89,
5.82, 15.00 and 35.00: the parameters are the same as
shown in Fig. 3 except that the number of collocation
points is equal to 26 for both time-step sizes (a) Ar=10""
and (b) Ar=10"".

Tzy
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©
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Platen, 1997). Furthermore, a very good agreement with
the results of other methods is obtained by the present
method with a coarse set of collocation points. Fig. 9
shows the shear stress profiles 7,, and the statistical error
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bars with respect to location y for a sampling of 120
computations using two time-step sizes, At =107 and
107, and 26 collocation points, at the following times
t=0.60, 3.89, 5.82, 15.00 and 35.00. The results show
that the statistical errors are small and stable at the
steady state.

uz(y, 1)

Fig. 10. The start-up planar Couette flow problem using the
FENE-P dumbbell model in the present CVFNNSS
method: the parameters are number of dumbbells M=
50000, number of collocation points N=41, 1,=49.62,
b=50, n,=0.0521 and Ar=10". The velocity profile with
respect to location y at different times shows the strong
velocity overshoots and undershoots. In this plot the
time is non-dimensionlised with respect to the reference
time t, as defined in Mochimaru (1983) for easy com-
parison with the latter results.

- N=41
: - - N=31

0.9 " . e RS o N=26 |

-—- N=21

o8-

0.7

08l f oL

0.5+

uz(y,t)

0.4

031

0.2 r

otH -/ -/

0 ; i
0 2 4

ok
®
3
N
=
&

Fig. 11. The start-up planar Couette flow problem using FENE-
P dumbbell model in the present CVFNNSS method:
the parameters other than N are shown in Fig.10. The
evolution of the velocity field with respect to time at
locations y=0.2, y=0.4, y=0.6 and y=0.8 for the cases of
N=41, 31, 26 and 21.
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7.2. Start-up planar Couette flow with the FENE-P
model

The start-up planar Couette flow problem using the
FENE-P model was solved by Mochimaru (1983) where
the macroscopic numerical approach made use of the con-
stitutive equation derived from the kinetic theory of a dilute
solution of the FENE-P dumbbells in a Newtonian fluid
(e.g. equation (13.5-56) of Bird et al. (1987)). The problem
with the same material parameters was also solved by Laso
and Ottinger (1993) using the CONNFFESSIT method.
Similarly, the problem is solved by the present CVFNNSS

— N=41

~Tyz

2 4 6 8 10 12 14 16

Fig. 12, The start-up planar Couette flows using the FENE-P
model in the present CVFNNSS method: the parameters
other than N are shown in Fig. 10. The evolution the
shear stress at the location y=0.8 with respect to time for
the cases of N=41, 31, 26 and 21.

—— N=41

Fig. 13. The start-up planar Couette flows using the FENE-P model
in the present CVFNNSS method: the parameters other
than &V are the same as shown in Fig. 10. The evolution of
the first normal stress difference at location y=0.8 with
respect to time for the cases of N=41, 31, 26 and 2I.
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11ethod with the same parameters as in Mochimaru (1983),
I.aso and Ottinger (1993), i.e. p= 1.2325, A5 =49.62, b =
0, n, = 0.050332. However the time increment At in the
[ resent method can be as high as 107 which appears to be
an improvement in comparison with Laso and Ottinger
(1993) where Ar = 107, Fig. 10 and 11 show the evolution
« f velocity field which exhibits oscillatory transient behav-

—_ Ty.‘v

0z H ; A : ) i
0 5 10 16 20 25 30

t

Iig. 14, The start-up planar Couette flows using the FENE-P
model in the present CVFNNSS method: The param-
eters are the same as shown in Fig. 10 except that the
number of collocation points is decreased from 41 to 31.
The evolution of the shear stresses at locations y=0.2,
y=04, y=0.6, y=0.8 and y=1.0 with respect to time.

= ; ; ; ; : ;
0 5 10 15 20 25 30

i

I"ig. 15, The start-up planar Couette flows using the FENE-P
model in the present CVFNNSS method: the parameters
are the same as shown in Fig. 10 except that the number
of collocation points is decreased from 41 to 31. The
evolution of the first normal stress differences at loca-
tions y=0.2, y=0.4, y=0.6, y=0.8 and y=1.0 with respect
to time.
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iour. Keeping the number and distribution of dumbbells
the same, the number of collocation points is varied from
21 to' 41 (Figs. 11-13) to confirm that the obtained results
are accurate. The present method are in excellent agree-
ment with the theoretical results by Mochimaru (1983),
Laso and Ottinger (1993) and the experimental results of
Chow and Fuller (1985) confirm the velocity overshoots
(Fig. 10-11) and stress propagation between the plates
(Fig. 14-15).

-~ = FENE
= FENE-P |.

uz(y,t)

Fig. 16. The start-up planar Couette flows using FENE and
FENE-P models in the present CVFNNSS method: the
parameters are shown in Fig. 3 for the FENE model and
Fig. 10 for the FENE-P model. Comparison of the
velocity fields with respect to time at locations: y=0.2,
y=0.4, y=0.6 and y=0.8.
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Fig. 17. The start-up planar Couette flow problem using FENE
and FENE-P models in the present CVFNNSS method:
the parameters are shown in Fig. 3 for the FENE model
and Fig. 10 for the FENE-P model. Comparison of the
shear stress at the fixed plate with respect to time
between the two models.
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Fig. 18. The start-up planar Couette flow problem using the
FENE and FENE-P models in the present CVFNNSS
method: the parameters are shown in Fig. 3 for the
FENE model and Fig. 10 for the FENE-P model. Com-
parison of the first normal stress difference at the fixed
plate with respect to time between the two models.

7.3. Comparison between the FENE and FENE-P
models

The comparison between the FENE and FENE-P models
in planar Couette start-up flows is summarised in Figs. 16-
18. Fig. 16 denotes the time development of velocity field
at four locations y=02, y=04, y=0.6 and y=0.8
between the FENE and FENE-P models. It shows that
there is a big difference in dynamic responses of two mod-
els, but the difference is non-significant after the flow
reaches the steady state. Fig. 16 also shows that the dura-
tion of the velocity overshoot is much longer for the
FENE-P model and the steady state seems to take much
longer to be reached than for the FENE model. The strong
oscillatory behaviour of the velocity and stress fields
because of the linearisation of the FENE-P models is in
excellent agreement with Laso and Ottinger (1993).

Fig. 17 depicts the difference of the evolution of shear
stresses between the FENE and FENE-P models at the
fixed plate with respect to time. It can be seen that the
FENE-P model produces a maximum of the shear stress
about twice the corresponding value for FENE, however
the maximum value seems to take longer to be reached for
the FENE-P model than for the FENE model. Furthermore,
the asymtotic values of the stress are the same at the steady
state in agreement with Laso and Ottinger (1993) and Her-
rchen and Ottinger (1997) and the steady state is reached in
about the same time.

The comparison of the first normal stress difference
between the FENE and FENE-P models at the fixed plate
is shown in Fig. 18. The maximum values of the first nor-
mal stress difference seem to take the same time to be
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reached for both models, despite the delay in the wall shear
stress maximum in the case of the FENE-P model. How-
ever, the values at the steady state are different although
they reach the steady state at about the same time.

8. Conclusions

The present work has demonstrated a successful adap-
tation of the macro-micro approach introduced in the
CONNFFESSIT method. The finite-element based macro-
procedure of the CONNFFESSIT is replaced by the
present meshless neural network-based procedure.

For the start-up Couette flow with the FENE and FENE-
P models, a complete agreement on the typical flow fea-
tures with the results of Mochimaru (1983) and Laso and
Ottinger (1993) is obtained. The present CVFNNSS
method retains the properties inherent in the CONNFFES-
SIT (Ottinger, 1996; Laso and Ottinger, 1993; Feigl et al.,
1995; Laso et al., 1997, 1999) namely (i) easy handling of
complex polymer models without closed form constitutive
equation, (ii) easy switching between different models, (iii)
realistic treatment of boundary conditions. Furthermore,
the present CVFNNSS has the advantage of being a mesh-
free numerical method where the domain discretization for
the governing PDE's is simply an unstructured set of col-
location points. Owing to the approximation characteristics
of RBFN:s, the initial conditions are represented in a more
natural way. The use of TPS-RBFN based approximation
results in a very smooth global stress tensor. For shear
flows, the present CVFNNSS method appears to be much
more stable than other methods reviewed here and
becomes unstable only at At = 5e-2. Furthermore, with a
coarse set of collocation points, the present method gives
results with the similar accuracy in comparison with those
from other schemes. However, these initial results are to be
confirmed with more complex flows, e.g. elongational
flows and/or fluids with more complicated dumbbell mod-
els in the future where numerical issues such as stochastic
integration schemes, choice of collocation points could be
expected to play a more critical role. The noise arising in
the velocity field and specifically in the stress tensor (Fig.
5-8, Fig. 12-15 and Fig. 17-18) due to the Brownian
motion can be drastically reduced by variance reduction
methods (Ottinger et al., 1997; Bovin and Picasso, 1999).
Variance reduction methods will also be taken into account
when the present method is implemented for higher dimen-
sional problems in the next stage of investigation.
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