• 제목/요약/키워드: time series

검색결과 7,616건 처리시간 0.039초

Time Series Data Cleaning Method Based on Optimized ELM Prediction Constraints

  • Guohui Ding;Yueyi Zhu;Chenyang Li;Jinwei Wang;Ru Wei;Zhaoyu Liu
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.149-163
    • /
    • 2023
  • Affected by external factors, errors in time series data collected by sensors are common. Using the traditional method of constraining the speed change rate to clean the errors can get good performance. However, they are only limited to the data of stable changing speed because of fixed constraint rules. Actually, data with uneven changing speed is common in practice. To solve this problem, an online cleaning algorithm for time series data based on dynamic speed change rate constraints is proposed in this paper. Since time series data usually changes periodically, we use the extreme learning machine to learn the law of speed changes from past data and predict the speed ranges that change over time to detect the data. In order to realize online data repair, a dual-window mechanism is proposed to transform the global optimal into the local optimal, and the traditional minimum change principle and median theorem are applied in the selection of the repair strategy. Aiming at the problem that the repair method based on the minimum change principle cannot correct consecutive abnormal points, through quantitative analysis, it is believed that the repair strategy should be the boundary of the repair candidate set. The experimental results obtained on the dataset show that the method proposed in this paper can get a better repair effect.

초공간을 고려한 SA 508강의 재질열화 시계열 신호의 카오스성 평가 (Chaotic evaluation of material degradation time series signals of SA 508 Steel considering the hyperspace)

  • 고준빈;윤인식;오상균;이영호
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.86-96
    • /
    • 1998
  • This study proposes the analysis method of time series ultrasonic signal using the chaotic feature extraction for degradation extent evaluation. Features extracted from time series data using the chaotic time series signal analyze quantitatively degradation extent. For this purpose, analysis objective in this study is fractal dimension, lyapunov exponent, strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal correlation) dimensions, lyapunov exponents, energy variation showed values of 2.217∼2.411, 0.097∼ 0.146, 1.601∼1.476 voltage according to degardation extent. The proposed chaotic feature extraction in this study can enhances precision ate of degradation extent evaluation from degradation extent results of the degraded materials (SA508 CL.3)

  • PDF

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

Time series prediction using virtual term generation scheme

  • Jo, Taeho;Cho, Sungzoon
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.67-70
    • /
    • 1996
  • The values measured at different time and enumerated sequentially by homogenous interval is called time series. Its goal is to predict values in future by analysing the measured values in past. The stastical approach to time series prediction tend to be by a neural approach with difficulties in expressing the reationship among past data. In neural approach, the preblem is the acquisting of the enough training data in advance. The goal of this paper is that such problem is solved by generating another term as virtual term between terms in time series.

  • PDF

Financial Application of Time Series Prediction based on Genetic Programming

  • Yoshihara, Ikuo;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.524-524
    • /
    • 2000
  • We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

  • PDF

시계열에서의 연속이상치가 예측에 미치는 영향 (The effect of patchy outliers in time series forecasting)

  • 이재준;편영숙
    • 응용통계연구
    • /
    • 제9권1호
    • /
    • pp.125-137
    • /
    • 1996
  • 시계열 자료는 흔히 반복되지 않는 비정상적인 사건의 영향으로 이상치를 포함한다. 시계열 자료는 관측치들 사이에 종속구조를 갖기 때문에, 이상치의 영향은 다른 통계적 분석에서 보다 더 심각할 수 있다. 본 논문에서는 연속이상치가 예측에 미치는 영향을 파악하는 데에 촛점을 두었다. 특히, l 시점 후 예측오차의 평균제곱의 증가량을 유도하고, 이 증가량으로 연속이상치가 예측에 미치는 영향을 측정하였다. 일반적으로, 연속이상치가 예측 원점에서 아주 가까운 시점에서 발생하지 않았으며 그 증가량은 크지 않음을 밝히고, 실제 자료를 분석하여 확인하였다.

  • PDF

비선형, 비정상 시계열 예측을 위한RBF(Radial Basis Function) 신경회로망 구조 (RBF Neural Network Sturcture for Prediction of Non-linear, Non-stationary Time Series)

  • 김상환;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2299-2301
    • /
    • 1998
  • In this paper, a modified RBF (Radial Basis Function) neural network structure is suggested for the prediction of time series with non-linear, non-stationary characteristics. Conventional RBF neural network predicting time series by using past outputs is for sensing the trajectory of the time series and for reacting when there exists strong relation between input and hidden neuron's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden neurons are modified to react to the increments of input variable and multiplied by increments(or decrements) of out puts for prediction. When the suggested structure is applied to prediction of Lorenz equation, and Rossler equation, improved performances are obtainable.

  • PDF

초단기 및 단기 다변수 시계열 결합모델을 이용한 24시간 부하예측 (24 hour Load Forecasting using Combined Very-short-term and Short-term Multi-Variable Time-Series Model)

  • 이원준;이문수;강병오;정재성
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.493-499
    • /
    • 2017
  • This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.

Threshold-asymmetric volatility models for integer-valued time series

  • Kim, Deok Ryun;Yoon, Jae Eun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.295-304
    • /
    • 2019
  • This article deals with threshold-asymmetric volatility models for over-dispersed and zero-inflated time series of count data. We introduce various threshold integer-valued autoregressive conditional heteroscedasticity (ARCH) models as incorporating over-dispersion and zero-inflation via conditional Poisson and negative binomial distributions. EM-algorithm is used to estimate parameters. The cholera data from Kolkata in India from 2006 to 2011 is analyzed as a real application. In order to construct the threshold-variable, both local constant mean which is time-varying and grand mean are adopted. It is noted via a data application that threshold model as an asymmetric version is useful in modelling count time series volatility.

시계열 데이터 결측치 처리 기술 동향 (Technical Trends of Time-Series Data Imputation)

  • 김에덴;고석갑;손승철;이병탁
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.145-153
    • /
    • 2021
  • Data imputation is a crucial issue in data analysis because quality data are highly correlated with the performance of AI models. Particularly, it is difficult to collect quality time-series data for uncertain situations (for example, electricity blackout, delays for network conditions). Thus, it is necessary to research effective methods of time-series data imputation. Many studies on time-series data imputation can be divided into 5 parts, including statistical based, matrix-based, regression-based, deep learning (RNN and GAN) based methodologies. This study reviews and organizes these methodologies. Recently, deep learning-based imputation methods are developed and show excellent performance. However, it is associated to some computational problems that make it difficult to use in real-time system. Thus, the direction of future work is to develop low computational but high-performance imputation methods for application in the real field.